Supervisory control and data acquisition (SCADA) systems are widely used to monitor and control operations in electrical power distribution facilities, oil and gas pipelines, water distribution systems and sewage treatment plants. Technological advances over the past decade have seen these traditionally closed systems become open and Internet-connected, which puts the service infrastructures at risk. This paper examines the response to the 2000 SCADA security incident at Maroochy Water Services in Queensland, Australia. The lessons learned from this incident are useful for establishing academic and industry-based research agendas in SCADA security as well as for safeguarding critical infrastructure components.
Previous analysis finds that people respond differently to "financial" (e.g., tax evasion) and "moral" (e.g., sexual misconduct) political scandals. However, experimental and observational studies tend to reach different conclusions about which type of scandal induces a stronger negative reaction from the public. We use an experiment embedded in a national survey to examine the possibility that these divergent findings can, in part, be explained by a failure to consider the effects of abuses of power. Consistent with previous experimental work, we find that people respond more negatively to financial scandals than to moral scandals when they do not involve abuses of power. However, abuses of power substantially affect responses to both types of scandals. We also find that moral and financial scandals affect personal and job evaluations of a politician differently. These findings support our contention that to understand public responses to scandal, it is crucial to consider the relationship between the scandalous behavior and the official's formal responsibilities.
We describe a new networking primitive, called a Path Verification Mechanism (PVM). There has been much recent work about how senders and receivers express policies about the paths that their packets take. For instance, a company might want fine-grained control over which providers carry which traffic between its branch offices, or a receiver may want traffic sent to it to travel through an intrusion detection service.While the ability to express policies has been well-studied, the ability to enforce policies has not. The core challenge is: if we assume an adversarial, decentralized, and high-speed environment, then when a packet arrives at a node, how can the node be sure that the packet followed an approved path? Our solution, ICING, incorporates an optimized cryptographic construction that is compact, and requires negligible configuration state and no PKI. We demonstrate ICING's plausibility with a NetFPGA hardware implementation. At 93% more costly than an IP router on the same platform, its cost is significant but affordable. Indeed, our evaluation suggests that ICING can scale to backbone speeds.
The cuticle, a hydrophobic layer of cutin and waxes synthesized by plant epidermal cells, is the major barrier to water loss when stomata are closed at night and under water-limited conditions. Elucidating the genetic architecture of natural variation for leaf cuticular conductance (gc) is important for identifying genes relevant to improving crop productivity in drought-prone environments. To this end, we conducted a genome-wide association study of gc of adult leaves in a maize inbred association panel that was evaluated in four environments (Maricopa, AZ, and San Diego, CA, in 2016 and 2017). Five genomic regions significantly associated with gc were resolved to seven plausible candidate genes (ISTL1, two SEC14 homologs, cyclase-associated protein, a CER7 homolog, GDSL lipase, and β-D-XYLOSIDASE 4). These candidates are potentially involved in cuticle biosynthesis, trafficking and deposition of cuticle lipids, cutin polymerization, and cell wall modification. Laser microdissection RNA sequencing revealed that all these candidate genes, with the exception of the CER7 homolog, were expressed in the zone of the expanding adult maize leaf where cuticle maturation occurs. With direct application to genetic improvement, moderately high average predictive abilities were observed for whole-genome prediction of gc in locations (0.46 and 0.45) and across all environments (0.52). The findings of this study provide novel insights into the genetic control of gc and have the potential to help breeders more effectively develop drought-tolerant maize for target environments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.