As top predators in the northeast Pacific Ocean, northern elephant seals (Mirounga angustirostris) are vulnerable to bioaccumulation of persistent organic pollutants (POPs). Our study examined a suite of POPs in blubber (inner and outer) and blood (serum) of free-ranging northern elephant seals. For adult females (N=24), we satellite tracked and sampled the same seals before and after their approximately seven month long foraging trip. For males, we sampled different adults and sub-adults before (N=14) and after (N=15) the same foraging trip. For females, we calculated blubber burdens for all compounds. The highest POP concentrations in males and females were found for ∑DDTs and ∑PCBs. In blubber and serum, males had significantly greater concentrations than females for almost all compounds. For males and females, ∑DDT and ∑PBDEs were highly correlated in blubber and serum. While ∑PCBs were highly correlated with ∑DDTs and ∑PBDEs in blubber and serum for males, ∑PCBs showed weaker correlations with both compounds in females. As females gained mass while foraging, concentrations of nearly all POPs in inner and outer blubber significantly decreased; however, the absolute burden in blubber significantly increased, indicating ingestion of contaminants while foraging. Additionally, we identified three clusters of seal foraging behavior, based on geography, diving behavior, and stable carbon and nitrogen isotopes, which corresponded with differences in ∑DDTs, ∑PBDEs, MeO-BDE 47, as well as the ratio of ∑DDTs to ∑PCBs, indicating the potential for behavior to heighten or mitigate contaminant exposure. The greatest concentrations of ∑DDTs and ∑PBDEs were observed in the cluster that foraged closer to the coast and had blood samples more enriched in (13)C. Bioaccumulation of POPs by elephant seals supports mesopelagic food webs as a sink for POPs and highlights elephant seals as a potential sentinel of contamination in deep ocean food webs.
Annual migrations of anadromous salmon are an important source of nutrients for many coastal streams. Much of the current research on salmon-derived nutrients has focused on nutrient retention via carcass consumption by mammals, birds, and macroinvertebrates, whereas retention and transfer of nutrients by microbiota has received less attention. Our research objective was to investigate nutrient movement from decomposing salmon tissue into periphyton, bryophytes, leaf-pack microbiota, and amphipods in laboratory mesocosm streams. We measured d 15 N of microbiota growing on unglazed tiles (periphyton), microbiota growing on leaf packs, bryophytes on partially submerged stones, and amphipods; C:N and C:P ratios of microbiota and bryophytes; and periphyton biomass (ash-free dry mass and chlorophyll a) in channels with and without decomposing salmon tissue. Periphyton, bryophytes, and leafpack microbiota had lower C:N ratios and leaf-pack microbiota had lower C:P ratios in salmon channels than in reference channels. These results indicate increased nutrient quality in salmon channels. Periphyton ash-free dry mass and chlorophyll a were greater in salmon channels than in reference channels. d 15 N values for periphyton, leaf-pack microbiota, and bryophytes were more enriched in salmon channels than in reference channels, a result that demonstrates that salmon-derived nutrients can be retained in streams through multiple mechanisms. Transfer of salmon-derived nutrients through leaf-pack microbiota to a higher trophic level was evidenced by higher d 15 N in amphipods from salmon channels than from reference channels. Last, higher P concentrations (as much as 90% higher) in biota from salmon channels than from reference channels indicate uptake of salmon-derived P in salmon channels. These results suggest that periphyton, leaf-pack microbiota, and bryophytes might play a critical role in capturing salmon-derived nutrients.
Glacial legacy, barriers to migration, and dispersal abilities are important determinants of intraspecific genetic diversity. Genetic comparisons can elucidate the distribution of genetic variants among populations, but for many groups of organisms the concordance of population genetic structure and historical refugia among co-occurring species remains unclear. We compared phylogeographic histories of 4 stoneflies (Calineuria californica, Hesperoperla pacifica, Pteronarcys californica, and Pteronarcys princeps) and 1 caddisfly (Dicosmoecus gilvipes) across their species ranges. Study species had large body and wing sizes that suggest strong flying ability and dispersal potential. Nevertheless, riverine habitat restrictions and mating behaviors can inhibit dispersal. We used mitochondrial and nuclear gene sequences to examine population genetic structure relative to potential past and present barriers to dispersal in the western USA. North-south population genetic structure was present for each species but was more pronounced for 2 stoneflies (C. californica and P. californica) and the caddisfly. For these 3 species, phylogenies indicated concordant clades north and south of San Francisco Bay, a large, saltwater estuary in California. Basal phylogenetic nodes and regional centers of haplotype diversity suggested common historical refugia in northern California or southern Oregon, similar to that found in previous studies of salamanders. For 1 stonefly (C. californica) and the caddisfly, distinct populations in the Sierra Nevada Mountains suggested potential barriers to gene flow. The presence of population genetic structure suggests vulnerability to loss of intraspecific diversity under climate change scenarios, particularly for populations at high elevations.
Long-lived, upper trophic level marine mammals are vulnerable to bioaccumulation of persistent organic pollutants (POPs). Internal tissues may accumulate and mobilize POP compounds at different rates related to the body condition of the animal and the chemical characteristics of individual POP compounds; however, collection of samples from multiple tissues is a major challenge to ecotoxicology studies of free-ranging marine mammals and the ability to predict POP concentrations in one tissue from another tissue remains rare. Northern elephant seals (Mirounga angustirostris) forage on mesopelagic fish and squid for months at a time in the northeastern Pacific Ocean, interspersed with two periods of fasting on land, which results in dramatic seasonal fluctuations in body condition. Using northern elephant seals, we examined commonly studied tissues in mammalian toxicology to describe relationships and determine predictive equations among tissues for a suite of POP compounds, including ΣDDTs, ΣPCBs, Σchlordanes, and ΣPBDEs. We collected paired blubber (inner and outer) and blood serum samples from adult female and male seals in 2012 and 2013 at Año Nuevo State Reserve (California, USA). For females (N = 24), we sampled the same seals before (late in molting fast) and after (early in breeding fast) their approximately seven month foraging trip. For males, we sampled different seals before (N = 14) and after (N = 15) their approximately four month foraging trip. We observed strong relationships among tissues for many, but not all compounds. Serum POP concentrations were strong predictors of inner blubber POP concentrations for both females and males, while serum was a more consistent predictor of outer blubber for males than females. The ability to estimate POP blubber concentrations from serum, or vice versa, has the potential to enhance toxicological assessment and physiological modeling. Furthermore, predictive equations may illuminate commonalities or distinctions in bioaccumulation across marine mammal species.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.