When activated, the serine/threonine kinase AKT mediates an antiapoptotic signal implicated in chemoresistance of various cancers. The mechanism(s) of AKT activation are unknown, though overexpression of HER-2/neu has been implicated in breast cancer. Therefore, we determined the incidence of activated AKT in human pancreatic cancer, whether HER-2/neu is involved in AKT activation, and if AKT activation is associated with biologic behaviour. HER-2/neu expression and AKT activation were examined in seven pancreatic cancer cell lines by Western blotting. The in vitro effect of HER-2/neu inhibition on AKT activation was similarly determined. Finally, 78 pancreatic cancer specimens were examined for AKT activation and HER-2/neu overexpression, and correlated with the clinical prognostic variable of histologic grade. HER-2/neu was overexpressed in two of seven cell lines; these two cell lines demonstrated the highest level of AKT activation. Inhibition of HER-2/neu reduced AKT activation in vitro. AKT was activated in 46 out of 78 (59%) of the pancreatic cancers; HER-2/neu overexpression correlated with AKT activation (P ¼ 0.015). Furthermore, AKT activation was correlated with higher histologic tumour grade (P ¼ 0.047). Thus, it is concluded that AKT is frequently activated in pancreatic cancer; this antiapoptotic signal may be mediated by HER-2/neu overexpression. AKT activation is associated with tumour grade, an important prognostic factor.
Hypothesis: Despite advances in preoperative radiologic imaging, a significant fraction of potentially resectable pancreatic cancers are found to be unresectable at laparotomy. We tested the hypothesis that preoperative serum levels of CA19-9 (cancer antigen) and carcinoembryonic antigen will identify patients with unresectable pancreatic cancer despite radiologic staging demonstrating resectable disease. Design and Setting: Academic tertiary care referral center.
Activation of the serine/threonine kinase AKT is common in pancreatic cancer; inhibition of which sensitises cells to the apoptotic effect of chemotherapy. Of the various downstream targets of AKT, we examined activation of the NF-kB transcription factor and subsequent transcriptional regulation of BCL-2 gene family in pancreatic cancer cells. Inhibition of either phosphatidylinositol-3 kinase or AKT led to a decreased protein level of the antiapoptotic gene BCL-2 and an increased protein level of the proapoptotic gene BAX. Furthermore, inhibition of AKT decreased the function of NF-kB, which is capable of transcriptional regulation of the BCL-2 gene. Inhibiting this pathway had little effect on the basal level of apoptosis in pancreatic cancer cells, but increased the apoptotic effect of chemotherapy. The antiapoptotic effect of AKT activation in pancreatic cancer cells may involve transcriptional induction of a profile of BCL-2 proteins that confer resistance to apoptosis; alteration of this balance allows sensitisation to the apoptotic effect of chemotherapy.
Diverse signaling pathways variably regulate BCL-2 gene expression in a cell type-specific fashion. Therapy to decrease BCL-2 levels in various human cancers would be more broadly applicable if targeted to transcriptional activation rather than signal transduction cascades. Finally, the apoptotic efficacy of proteasome inhibition with bortezomib paralleled the ability to inhibit NF-kappaB activity and decrease BCL-2 levels.
Bortezomib improves efficacy in combination with gemcitabine and carboplatin in NSCLC, but sequential effects are important and must be considered when developing therapeutic regimens.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.