IMPORTANCE The comparative clinical benefit of nonstatin therapies that reduce low-density lipoprotein cholesterol (LDL-C) remains uncertain. OBJECTIVE To evaluate the association between lowering LDL-C and relative cardiovascular risk reduction across different statin and nonstatin therapies. DATA SOURCES AND STUDY SELECTION The MEDLINE and EMBASE databases were searched (1966-July 2016). The key inclusion criteria were that the study was a randomized clinical trial and the reported clinical outcomes included myocardial infarction (MI). Studies were excluded if the duration was less than 6 months or had fewer than 50 clinical events. Studies of 9 different types of LDL-C reduction approaches were included. DATA EXTRACTION AND SYNTHESIS Two authors independently extracted and entered data into standardized data sheets and data were analyzed using meta-regression. MAIN OUTCOMES AND MEASURES The relative risk (RR) of major vascular events (a composite of cardiovascular death, acute MI or other acute coronary syndrome, coronary revascularization, or stroke) associated with the absolute reduction in LDL-C level; 5-year rate of major coronary events (coronary death or MI) associated with achieved LDL-C level. RESULTS A total of 312 175 participants (mean age, 62 years; 24% women; mean baseline LDL-C level of 3.16 mmol/L [122.3 mg/dL]) from 49 trials with 39 645 major vascular events were included. The RR for major vascular events per 1-mmol/L (38.7-mg/dL) reduction in LDL-C level was 0.77 (95% CI, 0.71-0.84; P < .001) for statins and 0.75 (95% CI, 0.66-0.86; P = .002) for established nonstatin interventions that work primarily via upregulation of LDL receptor expression (ie, diet, bile acid sequestrants, ileal bypass, and ezetimibe) (between-group difference, P = .72). For these 5 therapies combined, the RR was 0.77 (95% CI, 0.75-0.79, P < .001) for major vascular events per 1-mmol/L reduction in LDL-C level. For other interventions, the observed RRs vs the expected RRs based on the degree of LDL-C reduction in the trials were 0.94 (95% CI, 0.89-0.99) vs 0.91 (95% CI, 0.90-0.92) for niacin (P = .24); 0.88 (95% CI, 0.83-0.92) vs 0.94 (95% CI, 0.93-0.94) for fibrates (P = .02), which was lower than expected (ie, greater risk reduction); 1.01 (95% CI, 0.94-1.09) vs 0.90 (95% CI, 0.89-0.91) for cholesteryl ester transfer protein inhibitors (P = .002), which was higher than expected (ie, less risk reduction); and 0.49 (95% CI, 0.34-0.71) vs 0.61 (95% CI, 0.58-0.65) for proprotein convertase subtilisin/kexin type 9 inhibitors (P = .25). The achieved absolute LDL-C level was significantly associated with the absolute rate of major coronary events (11 301 events, including coronary death or MI) for primary prevention trials (1.5% lower event rate [95% CI, 0.5%-2.6%] per each 1-mmol/L lower LDL-C level; P = .008) and secondary prevention trials (4.6% lower event rate [95% CI, 2.9%-6.4%] per each 1-mmol/L lower LDL-C level; P < .001). CONCLUSIONS AND RELEVANCE In this meta-regression analysis, the use of statin and nonstatin th...
Background: In DECLARE-TIMI 58 (Dapagliflozin Effect on Cardiovascular Events–Thrombolysis in Myocardial Infarction 58), the sodium-glucose cotransporter 2 inhibitor dapagliflozin reduced the composite end point of cardiovascular death/hospitalization for heart failure (HHF) in a broad population of patients with type 2 diabetes mellitus. However, the impact of baseline left ventricular ejection fraction (EF) on the clinical benefit of sodium-glucose cotransporter 2 inhibition is unknown. Methods: In the DECLARE-TIMI 58 trial, baseline heart failure (HF) status was collected from all patients, and EF was collected when available. HF with reduced EF (HFrEF) was defined as EF <45%. Outcomes of interest were the composite of cardiovascular death/HHF, its components, and all-cause mortality. Results: Of 17 160 patients, 671 (3.9%) had HFrEF, 1316 (7.7%) had HF without known reduced EF, and 15 173 (88.4%) had no history of HF at baseline. Dapagliflozin reduced cardiovascular death/HHF more in patients with HFrEF (hazard ratio [HR], 0.62 [95% CI, 0.45–0.86]) than in those without HFrEF (HR, 0.88 [95% CI, 0.76–1.02]; P for interaction=0.046), in whom the treatment effect of dapagliflozin was similar in those with HF without known reduced EF (HR, 0.88 [95% CI, 0.66–1.17]) and those without HF (HR, 0.88 [95% CI, 0.74–1.03]). Whereas dapagliflozin reduced HHF both in those with (HR, 0.64 [95% CI, 0.43–0.95]) and in those without HFrEF (HR, 0.76 [95% CI, 0.62–0.92]), it reduced cardiovascular death only in patients with HFrEF (HR, 0.55 [95% CI, 0.34–0.90]) but not in those without HFrEF (HR, 1.08 [95% CI, 0.89–1.31]; P for interaction=0.012). Likewise, dapagliflozin reduced all-cause mortality in patients with HFrEF (HR, 0.59 [95% CI, 0.40–0.88;) but not in those without HFrEF (HR, 0.97 [95% CI, 0.86–1.10]; P for interaction=0.016). Conclusions: In the first sodium-glucose cotransporter 2 inhibitor cardiovascular outcome trial to evaluate patients with type 2 diabetes mellitus stratified by EF, we found that dapagliflozin reduced HHF in patients with and without HFrEF and reduced cardiovascular death and all-cause mortality in patients with HFrEF. Clinical Trial Registration: URL: https://www.clinicaltrials.gov . Unique identifier: NCT01730534.
The efficacy of convalescent plasma for coronavirus disease 2019 (COVID-19) is unclear. Although most randomized controlled trials have shown negative results, uncontrolled studies have suggested that the antibody content could influence patient outcomes. We conducted an open-label, randomized controlled trial of convalescent plasma for adults with COVID-19 receiving oxygen within 12 d of respiratory symptom onset (NCT04348656). Patients were allocated 2:1 to 500 ml of convalescent plasma or standard of care. The composite primary outcome was intubation or death by 30 d. Exploratory analyses of the effect of convalescent plasma antibodies on the primary outcome was assessed by logistic regression. The trial was terminated at 78% of planned enrollment after meeting stopping criteria for futility. In total, 940 patients were randomized, and 921 patients were included in the intention-to-treat analysis. Intubation or death occurred in 199/614 (32.4%) patients in the convalescent plasma arm and 86/307 (28.0%) patients in the standard of care arm—relative risk (RR) = 1.16 (95% confidence interval (CI) 0.94–1.43, P = 0.18). Patients in the convalescent plasma arm had more serious adverse events (33.4% versus 26.4%; RR = 1.27, 95% CI 1.02–1.57, P = 0.034). The antibody content significantly modulated the therapeutic effect of convalescent plasma. In multivariate analysis, each standardized log increase in neutralization or antibody-dependent cellular cytotoxicity independently reduced the potential harmful effect of plasma (odds ratio (OR) = 0.74, 95% CI 0.57–0.95 and OR = 0.66, 95% CI 0.50–0.87, respectively), whereas IgG against the full transmembrane spike protein increased it (OR = 1.53, 95% CI 1.14–2.05). Convalescent plasma did not reduce the risk of intubation or death at 30 d in hospitalized patients with COVID-19. Transfusion of convalescent plasma with unfavorable antibody profiles could be associated with worse clinical outcomes compared to standard care.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.