earned a B.S. degree in chemistry from the University of Dayton in 2001 and as an undergraduate worked on conductive polymer syntheses at the Air Force Research Laboratory at Wright Patterson Air Force Base. He completed an M.S. degree in 2004 and Ph.D. degree in 2008 at Portland State University and joined the Lewis group at Caltech in 2008. He is currently an NSF-ACCF postdoctoral fellow (2009) and has been studying the electrical characteristics of inorganic semiconductors in contact with conductive polymers. His research interests include molecular semiconductors for solar energy conversion, porphyrin macrocycles for optoelectronic applications, and catalyst materials for photoelectrolysis. Emily L. Warren received a B.S. in chemical engineering at Cornell University in 2005. She received an M.Phil in Engineering for Sustainable Development from Cambridge University in 2006. She is currently a graduate student in Chemical Engineering at the California Institute of Technology. Her research interests include semiconductor photoelectrochemistry, solar energy conversion, and semiconductor nanowires. She is currently a graduate student in Chemical Engineering at the California Institute of Technology, working under Nathan S. Lewis. James R. McKone is in his third year of graduate studies in the Division of Chemistry and Chemical Engineering at the California Institute of Technology, working under Nathan S. Lewis and Harry B. Gray. In 2008 he graduated from Saint Olaf College with a Bachelor of Arts degree, double-majoring in music and chemistry. His current research focuses on semiconductor-coupled heterogeneous catalysis of the hydrogen evolution reaction using mixtures of earth-abundant transition metals. Shannon W. Boettcher earned his B.A. degree in chemistry from the University of Oregon, Eugene (2003), and, working with Galen Stucky, his Ph.D. in Inorganic Chemistry from the University of California, Santa Barbara (2008). Following postdoctoral work with Nate Lewis and Harry Atwater at the California Institute of Technology (2008-2010), he returned to the University of Oregon to join the faculty as an Assistant Professor. His research interests span synthesis and physical measurement with the goal of designing and understanding solid-state inorganic material architectures for use in solar-energy conversion and storage.
Figure S1. Panel (a) shows the J-E data collected for the electrode fabricated with 'enhanced' absorption due to light-trapping elements, in 0.5 M aq. H 2 SO 4 under ELH-type W-halogen solar simulation. Panel (b) shows a cross-sectional SEM image of the same sample. Panel (c) compares the spectral response collected for the sample with light-trapping elements ('enhanced') versus the spectral response for the normal sample. The red response in the 'enhanced' cell is significantly improved. Panel (d) shows the increased J sc with reduced angle dependence, for the enhanced sample compared to the normal sample. Panel (e) shows a digital photograph of a normal Pt/n + p-Si wire-array electrode evolving hydrogen under ~ 1 sun illumination. Small bubbles can be seen nucleating on the wire-array surface. The larger bubbles are stuck on the epoxy, and are the result of the coalescence of many small bubbles. S1
This review summarizes recent advances in the use of porphyrins, phthalocyanines, and related compounds as components of solar cells, including organic molecular solar cells, polymer cells, anddye-sensitized solar cells. The recent report of a porphyrin dye that achieves 11% power conversion efficiency in a dye-sensitized solar cell indicates that these classes of compounds can be as efficient as the more commonly used ruthenium bipyridyl derivatives.
The synthesis, electrochemical, and photophysical characterization of N,N'-dialkylated and N,N'-dibenzylated dipyridinium thiazolo[5,4-d]thiazole derivatives are reported. The thiazolothiazole viologens exhibit strong blue fluorescence with high quantum yields between 0.8-0.96. The dioctyl, dimethyl, and dibenzyl derivatives also show distinctive and reversible yellow to dark blue electrochromism at low reduction potentials. The fused bicyclic thiazolo[5,4-d]thiazole heterocycle allows the alkylated pyridinium groups to remain planar, strongly affecting their electrochemical properties. The singlet quantum yield is greatly enhanced with quaternarization of the peripheral 4-pyridyl groups (Φ increases from 0.22 to 0.96) while long-lived fluorescence lifetimes were observed between 1.8-2.4 ns. The thiazolothiazole viologens have been characterized using cyclic voltammetry, UV-visible absorbance and fluorescence spectroscopy, spectroelectrochemistry, and time-resolved photoluminescence. The electrochromic properties observed in solution, in addition to their strong fluorescent emission properties, which can be suppressed upon 2 e reduction, make these materials attractive for multifunctional optoelectronic, electron transfer sensing, and other photochemical applications.
The optical absorption, ionic conductivity, electronic conductivity, and gas separation properties have been evaluated for flexible composite films of ionically conductive polymers that contain partially embedded arrays of ordered, crystalline, p-type Si microwires. The cation exchange ionomer Nafion, and a recently developed anion exchange ionomer, poly(arylene ether sulfone) that contains quaternary ammonium groups (QAPSF), produced composite microwire array/ionomer membrane films that were suitable for operation in acidic or alkaline media, respectively. The ionic conductivity of the Si wire array/ Nafion composite films in 2.0 M H 2 SO 4 (aq) was 71 mS cm À1, and the conductivity of the Si wire array/ QAPSF composite films in 2.0 M KOH(aq) was 6.4 mS cm À1. Both values were comparable to the conductivities observed for films of these ionomers that did not contain embedded Si wire arrays. Two Si wire array/Nafion membranes were electrically connected in series, using a conducting polymer, to produce a trilayer, multifunctional membrane that exhibited an ionic conductivity in 2.0 M H 2 SO 4 (aq) of 57 mS cm À1 and an ohmic electrical contact, with an areal resistance of $0.30 U cm 2 , between the two physically separate embedded Si wire arrays. All of the wire array/ionomer composite membranes showed low rates of hydrogen crossover. Optical measurements indicated very low absorption (<3%) in the ionexchange polymers but high light absorption (up to 80%) by the wire arrays even at normal incidence, attesting to the suitability of such multifunctional membranes for application in solar fuels production.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.