A systematic investigation of the direction and degree of stereoselectivity in aldol addition reactions is presented involving achiral unsubstituted metal enolate and enolsilane nucleophiles and chiral aldehydes. The BF 3 ‚OEt 2 mediated Mukaiyama aldol reaction with R-unsubstituted, β-alkoxy aldehydes afforded good levels of 1,3-anti induction in the absence of internal aldehyde chelation. The level of 1,3-induction was found to be primarily dependent on the electrostatic nature of the aldehyde β-substituent. A revised model for 1,3-asymmetric induction is presented to account for these results based primarily on minimization of internal electrostatic and steric repulsion between the aldehyde carbonyl moiety and the β-substituents. A full conformational analysis, corroborated by semiempirical (AM1) calculations, is presented to support the proposed model. The merged impact of R and β aldehyde substituents was also systematically investigated, and an integrated 1,2-and 1,3-asymmetric induction model is proposed that incorporates the salient features of the Felkin-Anh and revised 1,3-model. In accordance with this integrated model, uniformly high levels of Felkin, 1,3-anti diastereofacial selectivity are observed in Mukaiyama aldol reactions with anti substituted R-methyl-β-alkoxy aldehydes, which contain stereocontrol elements that are in a stereoreinforcing relationship. In contrast, variable levels of aldehyde facial induction were observed in the corresponding reactions with syn substituted aldehyde substrates, which contain stereocontrol elements in a non-reinforcing relationship. The direction of aldehyde facial induction in Mukaiyama aldol additions to the syn substituted aldehydes was found to be primarily dependent on the size of the enolsilane, with the first known examples of anti-Felkin selective Mukaiyama aldol reactions observed under conditions known to preclude chelation for the addition of the enolsilane of acetone. We conclude that dominant 1,2-stereoinduction will be found in those reactions proceeding with the reactants in an antiperiplanar relationship, favored by sterically encumbered enolsilane substituents, while dominant 1,3-stereoinduction will be manifest from a synclinal transition state, preferred for less bulky enolsilane substituents. By inspection, the synclinal transition state may be destabilized by an increase in the steric bulk of the Lewis acid, and in accordance with this prediction the trityl perchlorate mediated enolsilane addition resulted in a dramatic reversal of facial selectivity relative to the BF 3 ‚OEt 2 mediated reaction. These trends were also documented in the mechanistically related addition of allylstannanes to anti and syn disubstituted chiral aldehydes.
The amyloid- (A) peptide, which likely plays a key role in Alzheimer disease, is derived from the amyloid- precursor protein (APP) through consecutive proteolytic cleavages by -site APP-cleaving enzyme and ␥-secretase. Unexpectedly ␥-secretase inhibitors can increase the secretion of A peptides under some circumstances. This "A rise" phenomenon, the same inhibitor causing an increase in A at low concentrations but inhibition at higher concentrations, has been widely observed. Here we show that the A rise depends on the -secretase-derived C-terminal fragment of APP (CTF) or C99 levels with low levels causing rises. In contrast, the N-terminally truncated form of A, known as "p3," formed by ␣-secretase cleavage, did not exhibit a rise. In addition to the A rise, low CTF or C99 expression decreased ␥-secretase inhibitor potency. This "potency shift" may be explained by the relatively high enzyme to substrate ratio under conditions of low substrate because increased concentrations of inhibitor would be necessary to affect substrate turnover. Consistent with this hypothesis, ␥-secretase inhibitor radioligand occupancy studies showed that a high level of occupancy was correlated with inhibition of A under conditions of low substrate expression. The A rise was also observed in rat brain after dosing with the ␥-secretase inhibitor BMS-299897. The A rise and potency shift are therefore relevant factors in the development of ␥-secretase inhibitors and can be evaluated using appropriate choices of animal and cell culture models. Hypothetical mechanisms for the A rise, including the "incomplete processing" and endocytic models, are discussed.Evidence suggests that the amyloid- (A) 9 peptide plays a key role in Alzheimer disease. A is generated by proteolytic processing of the amyloid- precursor protein (APP) through consecutive cleavages by the -site APP-cleaving enzyme (BACE) and ␥-secretase. APP is cleaved by BACE to form a -secretase-derived C-terminal fragment of APP (CTF), which undergoes further cleavage by ␥-secretase to form A. In addition, APP is cleaved by ␣-secretase to form ␣CTF, which undergoes ␥-secretase cleavage to produce an N-terminally truncated form of A known as "p3." Using the conventional amino acid numbering of A, BACE cleavage leads to A peptides with N-terminal ends at positions 1 and 11, whereas ␣-secretase leads to p3 peptides with an N-terminal end at position 17. Cleavage of CTF and ␣CTF by ␥-secretase produces a mixture of different C termini in the resulting A and p3 peptides. For example, the predominant ␥-secretase cleavage of CTFs at position 40 produces A-(1-40) and A-(11-40), whereas other ␥-secretase cleavage sites produce a range of less abundant A peptides, such as the disease-associated A-(1-42) (1, 2).
Targeted disruption of the pp60 src (Src) gene has implicated this tyrosine kinase in osteoclast-mediated bone resorption and as a therapeutic target for the treatment of osteoporosis and other bone-related diseases. Herein we describe the discovery of a nonpeptide inhibitor (AP22408) of Src that demonstrates in vivo antiresorptive activity. Based on a cocrystal structure of the noncatalytic Src homology 2 (SH2) domain of Src complexed with citrate [in the phosphotyrosine (pTyr) binding pocket], we designed 3,4-diphosphonophenylalanine (Dpp) as a pTyr mimic. In addition to its design to bind Src SH2, the Dpp moiety exhibits bone-targeting properties that confer osteoclast selectivity, hence minimizing possible undesired effects on other cells that have Src-dependent activities. The chemical structure AP22408 also illustrates a bicyclic template to replace the post-pTyr sequence of cognate Src SH2 phosphopeptides such as Ac-pTyr-Glu-Glu-Ile (1). An x-ray structure of AP22408 complexed with Lck (S164C) SH2 confirmed molecular interactions of both the Dpp and bicyclic template of AP22408 as predicted from molecular modeling. Relative to the cognate phosphopeptide, AP22408 exhibits significantly increased Src SH2 binding affinity (IC50 ؍ 0.30 M for AP22408 and 5.5 M for 1). Furthermore, AP22408 inhibits rabbit osteoclast-mediated resorption of dentine in a cellular assay, exhibits bone-targeting properties based on a hydroxyapatite adsorption assay, and demonstrates in vivo antiresorptive activity in a parathyroid hormone-induced rat model.
The structural and functional characterization of Src homology-2 (SH2) domains and their relationship to catalytic proteins (e.g., kinases, phosphatases, and lipases) or non-catalytic proteins (e.g., upstream adapters, and downstream transcription factors) has significantly impacted our understanding of signal transduction pathways and the identification of promising therapeutic targets for drug discovery. Such SH2-containing proteins are known to be intimately involved in the regulation of a number of cellular processes, including growth, mitogenesis, motility, metabolism, and gene transcription. Molecular recognition and biochemical selectivity exists for various SH2 domains based on their binding to phosphotyrosine (pTyr) and contiguous C-terminal amino acids of cognate protein 'partners' in a sequence-dependent manner (i.e., -pTyr-AA(1)-AA(2)-AA(3)-) which result in the formation of signal transduction protein complexes in cells. In recent years, drug discovery efforts have advanced peptidomimetic and nonpeptide inhibitors of such protein-protein interactions based on mimicking pTyr-containing peptide ligands as well as SH2 structure-based de novo design of nonpeptide templates that can capture key binding sites on the target protein. Noteworthy are peptidomimetic and nonpeptide inhibitors of Src, Lck, Grb2, PI-3K, and Zap70 from pioneering efforts that led to the first examples of cellularly and in vivo active SH2 inhibitors. This mini-review highlights key achievements in SH2 inhibitor drug discovery with an emphasis on peptidomimetic and nonpeptide lead compounds in terms of structure-based design, key chemical and biological properties, and proof-of-concept studies relative to further defining the role(s) of SH2 domains in signal transduction processes, cellular functions, and in vivo disease models.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.