Determining burned area in Canada across fire management agencies is challenging because of different mapping scales and methods. The inconsistent removal of unburned islands and water features from within burned polygon perimeters further complicates the problem. To improve the determination of burned area, the Canada Centre for Mapping and Earth Observation and the Canadian Forest Service developed the National Burned Area Composite (NBAC). The primary data sources for this tool are an automated system to derive fire polygons from 30-m Landsat imagery (Multi-Acquisition Fire Mapping System) and high-quality agency polygons delineated from imagery with spatial resolution ≤30m. For fires not mapped by these sources, the Hotspot and Normalized Difference Vegetation Index Differencing Synergy method was used with 250–1000-m satellite data. From 2004 to 2016, the National Burned Area Composite reported an average of 2.26 Mha burned annually, with considerable interannual variability. Independent assessment of Multi-Acquisition Fire Mapping System polygons achieved an average accuracy of 96% relative to burned-area data with high spatial resolution. Confidence intervals for national area burned statistics averaged±4.3%, suggesting that NBAC contributes relatively little uncertainty to current estimates of the carbon balance of Canada’s forests.
Sustainable forest management requires information on the spatial distribution, composition, and structure of forests. However, jurisdictions with large tracts of noncommercial forest, such as the Northwest Territories (NWT) of Canada, often lack detailed forest information across their land base. The goal of the Multisource Vegetation Inventory (MVI) project was to create a large area forest inventory (FI) map that could support strategic forest management in the NWT using optical, radar, and light detection and ranging (LiDAR) satellite remote sensing anchored on limited field plots and airborne LiDAR data. A new landcover map based on Landsat imagery was the first step to stratify forestland into broad forest types. A modelling chain linking FI plots to airborne and spaceborne LiDAR was then developed to circumvent the scarcity of field data in the region. The developed models allowed the estimation of forest attributes in thousands of surrogate FI plots corresponding to spaceborne LiDAR footprints distributed across the project area. The surrogate plots were used as a reference dataset for estimating each forest attribute in each 30 m forest cell within the project area. The estimation was based on the k-nearest neighbour (k-NN) algorithm, where the selection of the four most similar surrogate FI plots to each cell was based on satellite, topographic, and climatic data. Wall-to-wall 30 m raster maps of broad forest type, stand height, crown closure, stand volume, total volume, aboveground biomass, and stand age were created for a ~400,000 km2 area, validated with independent data, and generalized into a polygon GIS layer resembling a traditional FI map. The MVI project showed that a reasonably accurate FI map for large, remote, predominantly non-inventoried boreal regions can be obtained at a low cost by combining limited field data with remote sensing data from multiple sources.
Travel cost models were estimated for camping trips to designated Des modeles de frais de deplacement ont ete elabores pour des recreation areas in the Rocky-Clearwater Forest in Alberta durexcursions de camping effectuees dans des zones designees de la ing 1994. Trips were aggregated by postal code and resulting trip Foret Rocky-Clearwater en Alberta au cours de 1994. Les excurcounts from each postal code were utilized in truncated Poisson sions ont ete regroupees selon les codes postawt et le dhombrement and negative binomial regressions. The study involved the design des excursions par code postal a ete utilise dans des regressions of a camping fee collection permit which allowed a census of users tronqukes de Poisson et binominales negatives. L'etude comport& rather than a sample to be utilized in the analysis. Per trip conla conception Cun systeme de collecte des frais de permis de campsurner surplus estimates resulting from the Poisson model revealed ing qui permemit un recensement des campeurs pluGt qulm khanthat aggregate nonmarket benefits provided by the Alberta Land tillon destine ti &tre utilise lors de I'analyse. Les estimks de surand Forest Service forest recreation areas were about $750,000 plus par utilisateur decoulant du modele de poisson soulignaient in 1994. The study suggests that with little effort and some planque les benefices non-co-erciaux regroupes tels qu1identifiCs ning, fee collection permit systems can be used in concert with par les
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.