Abstract. In the search for metrics that can predict the presence of vulnerabilities early in the software life cycle, there may be some benefit to choosing metrics from the non-security realm. We analyzed non-security and security failure data reported for the year 2007 of a Cisco software system. We used non-security failure reports as input variables into a classification and regression tree (CART) model to determine the probability that a component will have at least one vulnerability. Using CART, we ranked all of the system components in descending order of their probabilities and found that 57% of the vulnerable components were in the top nine percent of the total component ranking, but with a 48% false positive rate. The results indicate that nonsecurity failures can be used as one of the input variables for security-related prediction models.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.