Analysis of microplastic particles in environmental samples needs sophisticated techniques and is time intensive due to sample preparation and detection. Alternatives to the most common (micro-) spectroscopic techniques, Fourier transform infrared and Raman spectroscopy, are thermoanalytical methods, in which specific decomposition products can be analyzed as marker compounds for different kinds of plastic types and mass contents. Thermal extraction desorption gas chromatography−mass spectrometry allows the fast identification and quantification of MP in environmental samples without sample preparation. Whereas to date only the analysis of thermoplastic polymers has been realized, this is the first time that even the analysis of tire wear (TW) content in environmental samples has been possible. Various marker compounds for TW were identified. They include characteristic decomposition products of elastomers, antioxidants, and vulcanization agents. Advantages and drawbacks of these marker substances were evaluated. Environmental samples from street runoff were exemplarily investigated, and the results are presented.
Thermoplastics reinforced with random glass mat have high strength and stiffness; the fibers dominate the mechanical behavior of these composites. The results of this investigation have shown that fibers are ineffective for reinforcing hot‐tool and vibration welded butt welds. The maximum weld strengths attained with GMT are comparable to the strengths of good welds of the unfilled material. The optimum hot‐tool welding parameters for the reinforced materials are different from those for the unfilled material. Unfilled polypropylene is easier to weld than unfilled polyamide. This characteristic is also true of the reinforced materials. In vibration welding, high welding pressures and high amplitudes result in lower mechanical properties. The optimum penetration depends on the fiber content of the bulk material. This penetration dependence is different from that for unfilled thermoplastic, for which the mechanical properties are independent of the penetration once a steady state has been attained.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.