Abstract-We address the problem of estimating a discrete joint density online, that is, the algorithm is only provided the current example and its current estimate. The proposed online estimator of discrete densities, EDDO (Estimation of Discrete Densities Online), uses classifier chains to model dependencies among features. Each classifier in the chain estimates the probability of one particular feature. Because a single chain may not provide a reliable estimate, we also consider ensembles of classifier chains and ensembles of weighted classifier chains. For all density estimators, we provide consistency proofs and propose algorithms to perform certain inference tasks. The empirical evaluation of the estimators is conducted in several experiments and on data sets of up to several million instances: We compare them to density estimates computed from Bayesian structure learners, evaluate them under the influence of noise, measure their ability to deal with concept drift, and measure the run-time performance. Our experiments demonstrate that, even though designed to work online, EDDO delivers estimators of competitive accuracy compared to batch Bayesian structure learners and batch variants of EDDO.
Discovering changes in the data distribution of streams and discovering recurrent data distributions are challenging problems in data mining and machine learning. Both have received a lot of attention in the context of classification. With the ever increasing growth of data, however, there is a high demand of compact and universal representations of data streams that enable the user to analyze current as well as historic data without having access to the raw data. To make a first step towards this direction, we propose a condensed representation that captures the various -possibly recurrent -data distributions of the stream by extending the notion of possible worlds. The representation enables queries concerning the whole stream and can, hence, serve as a tool for supporting decision-making processes or serve as a basis for implementing data mining and machine learning algorithms on top of it. We evaluate this condensed representation on synthetic and real-world data.
Abstract. This article proposes polynomial-time algorithms for learning typed pattern languages-formal languages that are generated by patterns consisting of terminal symbols and typed variables. A string is generated by a typed pattern by substituting all variables with strings of terminal symbols that belong to the corresponding types. The algorithms presented consitute non-trivial generalizations of Lange and Wiehagen's efficient algorithm for learning patterns in which variables are not typed. This is achieved by defining type witnesses to impose structural conditions on the types used in the patterns. It is shown that Lange and Wiehagen's algorithm implicitly uses a special case of type witnesses. Moreover, the type witnesses for a typed pattern form characteristic sets whose size is linear in the length of the pattern; our algorithm, when processing any set of positive data containing such a characteristic set, will always generate a typed pattern equivalent to the target pattern. Thus our algorithms are of relevance to the area of grammatical inference, in which such characteristic sets are typically studied.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.