We introduce a Poisson variety compatible with a cluster algebra structure and a compatible toric action on this variety. We study Poisson and topological properties of the union of generic orbits of this toric action. In particular, we compute the number of connected components of the union of generic toric orbits for cluster algebras over real numbers. As a corollary we compute the number of connected components of refined open Bruhat cells in Grassmanians G(k, n) over R.
In the previous paper [GSV] we have discussed Poisson properties of cluster algebras of geometric type for the case of a nondegenerate matrix of transition exponents. In this paper we consider the case of a general matrix of transition exponents. Our leading idea is that a relevant geometric object in this case is a certain closed 2-form compatible with the cluster algebra structure. The main example is provided by Penner coordinates on the decorated Teichmüller space, in which case the above form coincides with the classical Weil-Petersson symplectic form.
We introduce a new class of two(multi)-matrix models of positive Hermitean matrices coupled in a chain; the coupling is related to the Cauchy kernel and differs from the exponential coupling more commonly used in similar models. The correlation functions are expressed entirely in terms of certain biorthogonal polynomials and solutions of appropriate Riemann-Hilbert problems, thus paving the way to a steepest descent analysis and universality results. The interpretation of the formal expansion of the partition function in terms of multicolored ribbon-graphs is provided and a connection to the O(1) model. A steepest descent analysis of the partition function reveals that the model is related to a trigonal curve (three-sheeted covering of the plane) much in the same way as the Hermitean matrix model is related to a hyperelliptic curve.
The paper investigates the properties of certain biorthogonal polynomials appearing in a specific simultaneous Hermite-Padé approximation scheme. Associated with any totally positive kernel and a pair of positive measures on the positive axis we define biorthogonal polynomials and prove that their zeros are simple and positive. We then specialize the kernel to the Cauchy kernel 1 x+y and show that the ensuing biorthogonal polynomials solve a four-term recurrence relation, have relevant Christoffel-Darboux generalized formulas, and their zeros are interlaced. In addition, these polynomials solve a combination of Hermite-Padé approximation problems to a Nikishin system of order 2. The motivation arises from two distant areas; on the one hand, in the study of the inverse spectral problem for the peakon solution of the Degasperis-Procesi equation; on the other hand, from a random matrix model involving two positive definite random Hermitian matrices. Finally, we show how to characterize these polynomials in terms of a Riemann-Hilbert problem.
We apply the general theory of Cauchy biorthogonal polynomials developed in [6] and [7] to the case associated with Laguerre measures. In particular, we obtain explicit formulae in terms of Meijer-G functions for all key objects relevant to the study of the corresponding biorthogonal polynomials and the Cauchy two-matrix model associated with them. The central theorem we prove is that a scaling limit of the correlation functions for eigenvalues near the origin exists, and is given by a new determinantal two-level random point field, the Meijer-G random field. We conjecture that this random point field leads to a novel universality class of random fields parametrized by exponents of Laguerre weights. We express the joint distributions of the smallest eigenvalues in terms of suitable Fredholm determinants and evaluate them numerically. We also show that in a suitable limit, the Meijer-G random field converges to the Bessel random field and hence the behavior of the eigenvalues of one of the two matrices converges to the one of the Laguerre ensemble.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.