This paper gives an overview about the Score-P performance measurement infrastructure which is being jointly developed by leading HPC performance tools groups. It motivates the advantages of the joint undertaking from both the developer and the user perspectives, and presents the design and components of the newly developed Score-P performance measurement infrastructure. Furthermore, it contains first evaluation results in comparison with existing performance tools and presents an outlook to the long-term cooperative development of the new system.
Abstract-The Internet is smoothly migrating from an Internet of people towards an Internet of Things (IoT). By 2020, it is expected to have 50 billion things connected to the Internet. However, such a migration induces a strong level of complexity when handling interoperability between the heterogeneous Internet things, e.g., RFIDs (Radio Frequency Identification), mobile handheld devices, and wireless sensors. In this context, a couple of standards have been already set, e.g., IPv6, 6LoWPAN (IPv6 over Low power Wireless Personal Area Networks), and M2M (Machine to Machine communications). In this paper, we focus on the integration of wireless sensor networks into IoT, and shed further light on the subtleties of such integration. We present a real-world test bed deployment where wireless sensors are used to control electrical appliances in a smart building. Encountered problems are highlighted and suitable solutions are presented.
Abstract. Empirical auto-tuning and machine learning techniques have been showing high potential to improve execution time, power consumption, code size, reliability and other important metrics of various applications for more than two decades. However, they are still far from widespread production use due to lack of native support for auto-tuning in an ever changing and complex software and hardware stack, large and multi-dimensional optimization spaces, excessively long exploration times, and lack of unified mechanisms for preserving and sharing of optimization knowledge and research material.We present a possible collaborative approach to solve above problems using Collective Mind knowledge management system. In contrast with previous cTuning framework, this modular infrastructure allows to preserve and share through the Internet the whole auto-tuning setups with all related artifacts and their software and hardware dependencies besides just performance data. It also allows to gradually structure, systematize and describe all available research material including tools, benchmarks, data sets, search strategies and machine learning models. Researchers can take advantage of shared components and data with extensible meta-description to quickly and collaboratively validate and improve existing auto-tuning and benchmarking techniques or prototype new ones. The community can now gradually learn and improve complex behavior of all existing computer systems while exposing behavior anomalies or model mispredictions to an interdisciplinary community in a reproducible way for further analysis. We present several practical, collaborative and model-driven auto-tuning scenarios. We also decided to release all material at c-mind.org/repo to set up an example for a collaborative and reproducible research as well as our new publication model in computer engineering where experimental results are continuously shared and validated by the community.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.