The face numbers of simplicial complexes without missing faces of dimension larger than i are studied. It is shown that among all such (d−1)-dimensional complexes with non-vanishing top homology, a certain polytopal sphere has the componentwise minimal f -vector; and moreover, among all such 2-Cohen-Macaulay (2-CM) complexes, the same sphere has the componentwise minimal h-vector. It is also verified that the l-skeleton of a flag (d−1)-dimensional 2-CM complex is 2(d−l)-CM, while the l-skeleton of a flag piecewise linear (d−1)-sphere is 2(d−l)-homotopy CM. In addition, tight lower bounds on the face numbers of 2-CM balanced complexes in terms of their dimension and the number of vertices are established.
Upper bounds on the Betti numbers over an arbitrary field of Vietoris-Rips complexes are established, and examples of such complexes with large Betti numbers are given.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.