Object abstraction supports the separation of what operations are provided by systems and components from how the operations are implemented, and is essential in enabling the construction of complex systems from components. Unfortunately, clear and modular implementations have poor performance when expensive query operations are repeated, while efficient implementations that incrementally maintain these query results are much more difficult to develop and to understand, because the code blows up significantly, and is no longer clear or modular.This paper describes a powerful and systematic method that first allows the "what" of each component to be specified in a clear and modular fashion and implemented straightforwardly in an object-oriented language; then analyzes the queries and updates, across object abstraction, in the straightforward implementation; and finally derives the sophisticated and efficient "how" of each component by incrementally maintaining the results of repeated expensive queries with respect to updates to their parameters. Our implementation and experimental results for example applications in query optimization, role-based access control, etc. demonstrate the effectiveness and benefit of the method.
This article describes a very high-level language for clear description of distributed algorithms and optimizations necessary for generating efficient implementations. The language supports high-level control flows where complex synchronization conditions can be expressed using high-level queries, especially logic quantifications, over message history sequences. Unfortunately, the programs would be extremely inefficient, including consuming unbounded memory, if executed straightforwardly.We present new optimizations that automatically transform complex synchronization conditions into incremental updates of necessary auxiliary values as messages are sent and received. The core of the optimizations is the first general method for efficient implementation of logic quantifications. We have developed an operational semantics of the language, implemented a prototype of the compiler and the optimizations, and successfully used the language and implementation on a variety of important distributed algorithms.
Dynamic languages such as Python allow programs to be written more easily using high-level constructs such as comprehensions for queries and using generic code. Efficient execution of programs then requires powerful optimizationsincrementalization of expensive queries and specialization of generic code. Effective incrementalization and specialization of dynamic languages require precise and scalable alias analysis.This paper describes the development and experimental evaluation of a may-alias analysis for a full dynamic objectoriented language, for program optimization by incrementalization and specialization. The analysis is flow-sensitive; we show that this is necessary for effective optimization of dynamic languages. It uses precise type analysis and a powerful form of context sensitivity, called trace sensitivity, to further improve analysis precision. It uses a compressed representation to significantly reduce the memory used by flowsensitive analyses. We evaluate the effectiveness of this analysis and 17 variants of it for incrementalization and specialization of Python programs, and we evaluate the precision, memory usage, and running time of these analyses on programs of diverse sizes. The results show that our analysis has acceptable precision and efficiency and represents the best trade-off between them compared to the variants.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.