[1] This paper presents data to support the presence of (1) intra-annual signals in the chemical composition (d 18 O and Sr/Ca) of the skeletons of sclerosponges from the Bahamas and (2) variable rates of skeletal accretion. These conclusions are based on data obtained by using a microsampling method for the stable oxygen and carbon isotopes in which material was extracted at a resolution of one sample every 34 mm and a laser microprobe which obtained trace element data every 20 mm (Sr, Mg, and Pb). An age model was established using a combination of changes in the concentration of Pb, the change in the d 13 C of the skeleton of the sclerosponges, and U/Th isotopic measurements. These methods yield a mean growth rate of 220 mm/yr but suggest that the growth rate in this particular sclerosponge was not constant. The calculated growth rate is within error identical to that determined by U/Th methods. The variable growth rate was confirmed through spectral analysis of the d 18 O and Sr/Ca data that showed peaks corresponding to the annual cycle in these parameters as well as peaks corresponding to growth rates of approximately 128, 212, 270, and 400 mm/yr. The presence of these additional frequencies suggests a growth rate between approximately 100 and 300 mm/yr. These conclusions were supported by modeling of oxygen isotopic data measured on a scleractinian coral as well as model isotope data generated on synthetic time series. These findings have important implications for the use of sclerosponges as proxies of paleoclimate because they emphasize the need for a precise yearly chronology in order that proxy data can be compared with climatic variables.
The Lower Cretaceous sections in northern Sinai are composed of the Risan Aneiza (upper Barremian‐middle Albian) and the Halal (middle Albian‐lower Cenomanian) formations. The facies reflect subtle paleobathymetry from inner to outer ramp facies. The inner ramp facies are peritidal, protected to open marine lagoons, shoals and rudist biostrome facies. The inner ramp facies grade northward into outer ramp deposits. The upper Barremian‐lower Cenomanian succession is subdivided into nine depositional sequences correlated with those recognized in the neighbouring Tethyan areas. These sequences are subdivided into 19 medium‐scale sequences based on the facies evolution, the recorded hardgrounds and flooding surfaces, interpreted as the result of eustatic sea level changes and local tectonic activities of the early Syrian Arc rifting stage. Each sequence contains a lower retrogradational parasequence set that constituted the transgressive systems tracts and an upper progradational parasequence set that formed the highstand systems tracts. Nine rudist levels are recorded in the upper Barremian through lower Cenomanian succession at Gabal Raghawi. At Gabal Yelleg two rudist levels are found in the Albian. The rudist levels are associated with the highstand systems tract deposits because of the suitability of the trophic conditions in the rudist‐dominated ramp.
Mississippian carbonate and silica-rich reservoirs of northern and central Oklahoma formed along a regionally extensive carbonate ramp to basin transect. The stratigraphy, lithology, and porosity characteristics of the Mississippian Meramec and Osage series vary significantly as older ramp carbonates prograde southward and transition into younger calcareous and quartz-rich silt deposits of the Anadarko Basin. Lithofacies identified within the northern carbonate-dominated portion of the system commonly include altered chert, skeletal grainstones, peloidal packstones-grainstones, bioturbated wackestones-packstones, bioturbated mudstones-wackestones, glauconitic sandstones, and siliceous shale. Lithofacies within the southern siliciclastic-dominated portion of the system include structureless to bioturbated sandstones, siltstones, and laminated mudstones, each with varying degrees of carbonate content. We group these core-based lithofacies into dominant lithologies/rock types which tie to well-log properties. Electrofacies classification methods including Artificial-Neural Network (ANN) and k-means clustering predict lithologies in non-cored wells. ANNs yielded the highest overall prediction accuracy of 85% for lithologies. Core, well log, and lithology log data establish the regional stratigraphic framework. In this study, the Mississippian interval of interest subdivides into sixteen stratigraphic zones. A depositional-dip oriented cross section and associated reservoir models illustrate both proximal to distal and stratigraphic variability of lithology and porosity. Lithology trends moving from north to south, from older to younger strata, reveal a carbonate-dominated succession capped by diagenetically altered chert northward shifting into a siliciclastic-dominated interval, which increases in clay content southward. Northward, prospective conventional reservoirs developed near cycle tops within diagenetically replaced cherts and cherty limestones associated with subaerial exposure and sea-level fluctuations. Southward, higher total porosity associates with increased clay content linked to the suppression of calcite cement, forming prospective unconventional targets near the bases of depositional cycles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.