Ocean colour is recognised as an Essential Climate Variable (ECV) by the Global Climate Observing System (GCOS); and spectrally-resolved water-leaving radiances (or remote-sensing reflectances) in the visible domain, and chlorophyll-a concentration are identified as required ECV products. Time series of the products at the global scale and at high spatial resolution, derived from ocean-colour data, are key to studying the dynamics of phytoplankton at seasonal and inter-annual scales; their role in marine biogeochemistry; the global carbon cycle; the modulation of how phytoplankton distribute solar-induced heat in the upper layers of the ocean; and the response of the marine ecosystem to climate variability and change. However, generating a long time series of these products from ocean-colour data is not a trivial task: algorithms that are best suited for climate studies have to be selected from a number that are available for atmospheric correction of the satellite signal and for retrieval of chlorophyll-a concentration; since satellites have a finite life span, data from multiple sensors have to be merged to create a single time series, and any uncorrected inter-sensor biases could introduce artefacts in the series, e.g., different sensors monitor radiances at different wavebands such that producing a consistent time series of reflectances is not straightforward. Another requirement is that the products have to be validated against in situ observations. Furthermore, the uncertainties in the products have to be quantified, ideally on a pixel-by-pixel basis, to facilitate applications and interpretations that are consistent with the quality of the data. This paper outlines an approach that was adopted for generating an ocean-colour time series for climate studies, using data from the MERIS (MEdium spectral Resolution Imaging Spectrometer) sensor of the European Space Agency; the SeaWiFS (Sea-viewing Wide-Field-of-view Sensor) and MODIS-Aqua (Moderate-resolution Imaging Spectroradiometer-Aqua) sensors from the National Aeronautics and Space Administration (USA); and VIIRS (Visible and Infrared Imaging Radiometer Suite) from the National Oceanic and Atmospheric Administration (USA). The time series now covers the period from late 1997 to end of 2018. To ensure that the products meet, as well as possible, the requirements of the user community, marine-ecosystem modellers, and remote-sensing scientists were consulted at the outset on their immediate and longer-term requirements as well as on their expectations of ocean-colour data for use in climate research. Taking the user requirements into account, a series of objective criteria were established, against which available algorithms for processing ocean-colour data were evaluated and ranked. The algorithms that performed best with respect to the climate user requirements were selected to process data from the satellite sensors. Remote-sensing reflectance data from MODIS-Aqua, MERIS, and VIIRS were band-shifted to match the wavebands of SeaWiFS. Overlapping data were u...
In this work, trend estimates are used as indicators to compare the multi-annual variability of different satellite chlorophyll-a (Chla) data and to assess the fitness-for-purpose of multi-mission Chla products as climate data records (CDR). Under the assumption that single-mission products are free from spurious temporal artifacts and can be used as benchmark time series, multi-mission CDRs should reproduce the main trend patterns observed by single-mission series when computed over their respective periods. This study introduces and applies quantitative metrics to compare trend distributions from different data records. First, contingency matrices compare the trend diagnostics associated with two satellite products when expressed in binary categories such as existence, significance and signs of trends. Contingency matrices can be further summarized by metrics such as Cohen's κ index that rates the overall agreement between the two distributions of diagnostics. A more quantitative measure of the discrepancies between trends is provided by the distributions of differences between trend slopes. Thirdly, maps of the level of significance P of a t-test quantifying the degree to which two trend estimates differ provide a statistical, spatially-resolved, evaluation. The proposed methodology is applied to the multi-mission Ocean Colour-Climate Change Initiative (OC-CCI) Chla data. The agreement between trend distributions associated with OC-CCI data and single-mission products usually appears as good as when single-mission products are compared. As the period of analysis is extended beyond 2012 to 2015, the level of agreement tends to be degraded, which might be at least partly due to the aging of the MODIS sensor on-board Aqua. On the other hand, the trends displayed by the OC-CCI series over the short period 2012–2015 are very consistent with those observed with VIIRS. These results overall suggest that the OC-CCI Chla data can be used for multi-annual time series analysis (including trend detection), but with some caution required if recent years are included, particularly in the central tropical Pacific. The study also recalls the challenges associated with creating a multi-mission ocean color data record suitable for climate research.
Abstract.A compiled set of in situ data is important to evaluate the quality of ocean-colour satellite-data records. Here we describe the data compiled for the validation of the ocean-colour products from the ESA Ocean Colour Climate Change Initiative (OC-CCI). The data were acquired from several sources (MOBY, BOUSSOLE, AERONET-OC, SeaBASS, NOMAD, MERMAID, AMT, ICES, HOT, GeP&CO), span between 1997 and 2012, and have a global distribution. Observations of the following variables were compiled: spectral remote-sensing reflectances, concentrations of chlorophyll a, spectral inherent optical properties and spectral diffuse attenuation coefficients. The data were from multi-project archives acquired via the open internet services or from individual projects, acquired directly from data providers. Methodologies were implemented for homogenisation, quality control and merging of all data. No changes were made to the original data, other than averaging of observations that were close in time and space, elimination of some points after quality control and conversion to a standard format. The final result is a merged table designed for validation of satellite-derived ocean-colour products and available in text format. Metadata of each in situ measurement (original source, cruise or experiment, principal investigator) were preserved throughout the work and made available in the final table. Using all the data in a validation exercise increases the number of matchups and enhances the representativeness of different marine regimes. By making available the metadata, it is also possible to analyse each set of data separately. The compiled data are available at doi:10.1594/PANGAEA.854832 (Valente et al., 2015).
ULCOS-Pilot testing of the low-CO 2 Blast Furnace process at the experimental BF in Luleå The ULCOS blast furnace process aims at reducing the CO 2 emission of the blast furnace by 50% in two steps: l Decrease of carbon consumption by recycling most of the top gas after CO 2 removal, which requires operating the blast furnace with pure oxygen; l Underground storage of CO2.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.