A novel high surface area heterogeneous catalyst based on solution phase colloidal nanoparticle chemistry has been developed. Monodisperse platinum nanoparticles of 1.7-7.1 nm have been synthesized by alcohol reduction methods and incorporated into mesoporous SBA-15 silica during hydrothermal synthesis. Characterization of the Pt/SBA-15 catalysts suggests that Pt particles are located within the surfactant micelles during silica formation leading to their dispersion throughout the silica structure. After removal of the templating polymer from the nanoparticle surface, Pt particle sizes were determined from monolayer gas adsorption measurements. Infrared studies of CO adsorption revealed that CO exclusively adsorbs to atop sites and red-shifts as the particle size decreases suggesting surface roughness increases with decreasing particle size. Ethylene hydrogenation rates were invariant with particle size and consistent with a clean Pt surface. Ethane hydrogenolysis displayed significant structure sensitivity over the size range of 1-7 nm, while the apparent activation energy increased linearly up to a Pt particle size of approximately 4 nm and then remained constant. The observed rate dependence with particle size is attributed to a higher reactivity of coordinatively unsaturated surface atoms in small particles compared to low-index surface atoms prevalent in large particles. The most reactive of these unsaturated surface atoms are responsible for ethane decomposition to surface carbon. The ability to design catalytic structures with tunable properties by rational synthetic methods is a major advance in the field of catalyst synthesis and for the development of accurate structure-function relationships in heterogeneous reaction kinetics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.