The first point of our body’s contact with tactile stimuli (innocuous and noxious) is the epidermis, the outermost layer of skin that is largely composed of keratinocytes. Here, we sought to define the role that keratinocytes play in touch sensation in vivo and ex vivo. We show that optogenetic inhibition of keratinocytes decreases behavioral and cellular mechanosensitivity. These processes are inherently mediated by ATP signaling, as demonstrated by complementary cutaneous ATP release and degradation experiments. Specific deletion of P2X4 receptors in sensory neurons markedly decreases behavioral and primary afferent mechanical sensitivity, thus positioning keratinocyte-released ATP to sensory neuron P2X4 signaling as a critical component of baseline mammalian tactile sensation. These experiments lay a vital foundation for subsequent studies into the dysfunctional signaling that occurs in cutaneous pain and itch disorders, and ultimately, the development of novel topical therapeutics for these conditions.
Loss of glomerular podocytes is an indicator of diabetic kidney disease (DKD). The damage to these cells has been attributed in part to elevated intrarenal oxidative stress. The primary source of the renal reactive oxygen species, particularly HO, is NADPH oxidase 4 (NOX4). We hypothesized that NOX4-derived HO contributes to podocyte damage in DKD elevation of podocyte calcium. We used Dahl salt-sensitive (SS) rats with a null mutation for the gene (SS) and mice with knockout of the nonselective calcium channel TRPC6 or double knockout of TRPC5 and TRPC6. We performed whole animal studies and used biosensor measurements, electron microscopy, electrophysiology, and live calcium imaging experiments to evaluate the contribution of this pathway to the physiology of the podocytes in freshly isolated glomeruli. Upon induction of type 1 diabetes with streptozotocin, SS rats exhibited significantly lower basal intracellular Ca levels in podocytes and less DKD-associated damage than SS rats did. Furthermore, the angiotensin II-elicited calcium flux was blunted in glomeruli isolated from diabetic SS rats compared with that in glomeruli from diabetic SS rats. HO stimulated TRPC-dependent calcium influx in podocytes from wild-type mice, but this influx was blunted in podocytes from 6-knockout mice and, in a similar manner, in podocytes from5/6 double-knockout mice. Finally, electron microscopy revealed that podocytes of glomeruli isolated from 6-knockout or5/6 double-knockout mice were protected from damage induced by HO to the same extent. These data reveal a novel signaling mechanism involving NOX4 and TRPC6 in podocytes that could be pharmacologically targeted to abate the development of DKD.
PLEKHA7 (pleckstrin homology domain containing family A member 7) has been found in multiple studies as a candidate gene for human hypertension, yet functional data supporting this association are lacking. We investigated the contribution of this gene to the pathogenesis of salt-sensitive hypertension by mutating Plekha7 in the Dahl salt-sensitive (SS/JrHsdMcwi) rat using zincfinger nuclease technology. After four weeks on an 8% NaCl diet, homozygous mutant rats had lower mean arterial (149 ± 9 mmHg vs. 178 ± 7 mmHg; P < 0.05) and systolic (180 ± 7 mmHg vs. 213 ± 8 mmHg; P < 0.05) blood pressure compared with WT littermates. Albumin and protein excretion rates were also significantly lower in mutant rats, demonstrating a renoprotective effect of the mutation. Total peripheral resistance and perivascular fibrosis in the heart and kidney were significantly reduced in Plekha7 mutant animals, suggesting a potential role of the vasculature in the attenuation of hypertension. Indeed, both flow-mediated dilation and endothelium-dependent vasodilation in response to acetylcholine were improved in isolated mesenteric resistance arteries of Plekha7 mutant rats compared with WT. These vascular improvements were correlated with changes in intracellular calcium handling, resulting in increased nitric oxide bioavailability in mutant vessels. Collectively, these data provide the first functional evidence that Plekha7 may contribute to blood pressure regulation and cardiovascular function through its effects on the vasculature.H ypertension is a complex disease that is characterized by increased blood pressure, renal damage, and vascular dysfunction which collectively increase risk of atherosclerosis, stroke, heart disease, and renal failure in one-quarter of all adults worldwide (1-3). Because there is strong evidence of heritability in hypertension (2, 4, 5), considerable effort has been put toward identifying novel candidate genes and their molecular mechanisms. Genome-wide association studies (GWAS) have identified many potential hypertension loci, which shed light on the genetic complexity of this disease (5-8) but have provided little mechanistic insight. As such, validation and elucidation of the functional roles and disease mechanisms for these gene candidates are the next important challenges (4).Because hypertension is a complex disease (i.e., multiple variants of small effect sizes contributing to disease risk), we hypothesized candidate gene targeting on a genetically sensitized background would reveal functional role(s) of genetic disease modifiers. The Dahl salt-sensitive (SS) rat is an inbred genetic model of salt-sensitive hypertension that displays hypertensioninduced renal damage, cardiac hypertrophy and vascular dysfunction (9-11). These phenotypes are induced by exposing SS rats to a high-salt diet, which results in rapid induction of hypertensive phenotypes that closely resemble salt-induced hypertension seen in humans (12-15). Knockout of specific genes in this disease model using zinc-finger nuclease (ZFN...
Measuring animal behavior in the context of experimental manipulation is critical for modeling, and understanding neuropsychiatric disease. Prepulse inhibition of the acoustic startle response (PPI) is a behavioral phenomenon studied extensively for this purpose, but the results of PPI studies are often inconsistent. As a result, the utility of this phenomenon remains uncertain. Here, we deconstruct the phenomenon of PPI and confirm several limitations of the methodology traditionally utilized to describe PPI, including that the underlying startle response has a non-Gaussian distribution, and that the traditional PPI metric changes with different stimuli. We then develop a novel model that reveals PPI to be a combination of the previously appreciated scaling of the startle response, as well as a scaling of sound processing. Using our model, we find no evidence for differences in PPI in a rat model of Fragile-X Syndrome (FXS) compared with wild-type controls. These results in the rat provide a reliable methodology that could be used to clarify inconsistent PPI results in mice and humans. In contrast, we find robust differences between wild-type male and female rats. Our model allows us to understand the nature of these differences, and we find that both the startle-scaling and sound-scaling components of PPI are a function of the baseline startle response. Males and females differ specifically in the startle-scaling, but not the sound-scaling, component of PPI. These findings establish a robust experimental and analytical approach that has the potential to provide a consistent biomarker of brain function.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.