Tumor molecular profiling is a fundamental component of precision oncology, enabling the identification of genomic alterations in genes and pathways that can be targeted therapeutically. The existence of recurrent targetable alterations across distinct histologically-defined tumor types, coupled with an expanding portfolio of molecularly-targeted therapies, demands flexible and comprehensive approaches to profile clinically significant genes across the full spectrum of cancers. We established a large-scale, prospective clinical sequencing initiative utilizing a comprehensive assay, MSK-IMPACT, through which we have compiled matched tumor and normal sequence data from a unique cohort of more than 10,000 patients with advanced cancer and available pathological and clinical annotations. Using these data, we identified clinically relevant somatic mutations, novel non-coding alterations, and mutational signatures that were shared among common and rare tumor types. Patients were enrolled on genomically matched clinical trials at a rate of 11%. To enable discovery of novel biomarkers and deeper investigation into rare alterations and tumor types, all results are publicly accessible.
The Information Systems Department at Memorial Sloan Kettering Cancer Center developed the DARWIN Cohort Management System (DCMS). The DCMS identifies and tracks cohorts of patients based on genotypic and clinical data. It assists researchers and treating physicians in enrolling patients to genotype-matched IRB-approved clinical trials. The DCMS sends automated, actionable, and secure email notifications to users with information about eligible or enrolled patients before their upcoming appointments. The system also captures investigators input via annotations on patient eligibility and preferences on future status updates. As of August 2015, the DCMS is tracking 159,893 patients on both clinical operations and research cohorts. 134 research cohorts have been established and track 64,473 patients. 51,192 of these have had one or more genomic tests including MSK-IMPACT, comprising the pool eligible for genotype-matched studies. This paper describes the design and evolution of this Informatics solution.
PURPOSE Matching patients to investigational therapies requires new tools to support physician decision making. We designed and implemented Precision Insight Support Engine (PRECISE), an automated, just-in-time, clinical-grade informatics platform to identify and dynamically track patients on the basis of molecular and clinical criteria. Real-world use of this tool was analyzed to determine whether PRECISE facilitated enrollment to early-phase, genome-driven trials. MATERIALS AND METHODS We analyzed patients who were enrolled in genome-driven, early-phase trials using PRECISE at Memorial Sloan Kettering Cancer Center between April 2014 and January 2018. Primary end point was the proportion of enrolled patients who were successfully identified using PRECISE before enrollment. Secondary end points included time from sequencing and PRECISE identification to enrollment. Reasons for a failure to identify genomically matched patients were also explored. RESULTS Data were analyzed from 41 therapeutic trials led by 19 principal investigators. In total, 755 patients were accrued to these studies during the period that PRECISE was used. PRECISE successfully identified 327 patients (43%) before enrollment. Patients were diagnosed with 29 tumor types and harbored alterations in 43 oncogenes, most commonly ERBB2 (21.3%), PIK3CA (14.1%), and BRAF (8.7%). Median time from sequencing to enrollment was 163 days (interquartile range, 66 to 357 days), and from PRECISE identification to enrollment 87 days (interquartile range, 37 to 180 days). Common reasons for failing to identify patients before enrollment included accrual on the basis of molecular alterations that did not match pre-established PRECISE genomic eligibility (140 [33%] of 428) and external sequencing not available for parsing (127 [30%] of 428). CONCLUSION PRECISE identified 43% of all patients accrued to a diverse cohort of early-phase, genome-matched studies. Purpose-built informatics platforms represent a novel and potentially effective method for matching patients to molecularly selected studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.