Memory/effector T cells traffic efficiently through extralymphoid tissues, entering from the blood and leaving via the afferent lymph. During inflammation, T cell traffic into the affected tissue dramatically increases; however, the dynamics and mechanisms of T cell exit from inflamed tissues are poorly characterized. Here we show, using both a mouse and a sheep model, that large numbers of lymphocytes leave the chronically inflamed skin. Many T cells capable of producing IFN-γ and IL-17 also entered the draining afferent lymph, demonstrating that memory/effector T cells egress from sites of inflammation. Whereas efficient egress from acutely inflamed skin required lymphocyte-expressed CCR7, chronic inflammation promoted significant CCR7-independent exit as well. Lymphocyte exit at late time points of inflammation was sensitive to pertussis toxin but only partially affected by the drug FTY720, implying the contribution of alternative chemoattractant receptors other than S1P1. Our data show that CCR7 is an important receptor for lymphocyte egress from both resting and inflamed extralymphoid tissues, but that alternative exit receptors come into play during chronic inflammation.
B cells infiltrate the skin in many chronic inflammatory diseases caused by autoimmunity or infection. Despite potential contribution to disease, skin-associated B cells remain poorly characterized. Using an ovine model of granulomatous skin inflammation, we demonstrate that B cells increase in the skin and skin-draining afferent lymph during inflammation. Surprisingly, skin B cells are a heterogeneous population that is distinct from lymph node B cells, with more large lymphocytes as well as B-1-like B cells that co-express high levels IgM and CD11b. Skin B cells have increased MHCII, CD1, and CD80/86 expression compared with lymph node B cells, suggesting that they are well-suited for T cell activation at the site of inflammation. Furthermore, we show that skin accumulation of B cells and antibody-secreting cells during inflammation increases local antibody titers, which could augment host defense and autoimmunity. While skin B cells express typical skin homing receptors such as E-selectin ligand and alpha-4 and beta-1 integrins, they are unresponsive to ligands for chemokine receptors associated with T cell homing into skin. Instead, skin B cells migrate toward the cutaneously expressed CCR6 ligand CCL20. Our data support a model in which B cells use CCR6-CCL20 to recirculate through the skin, fulfilling a novel role in skin immunity and inflammation.
TLR-stimulated cross-presentation by conventional dendritic cells (cDCs) is important in host defense and antitumor immunity. We recently reported that cDCs lacking the type I IFN signaling molecule STAT2 are impaired in cross-presenting tumor Ags to CD8+ T cells. To investigate how STAT2 affects cross-presentation, we determined its requirements for dendritic cell activation. In this study, we report that STAT2 is essential for the activation of murine female cDCs upon TLR3, -4, -7, and -9 stimulation. In response to various TLR ligands, Stat2−/− cDCs displayed reduced expression of costimulatory molecules and type I IFN-stimulated genes. The cDC responses to exogenous IFN-α that we evaluated required STAT2 activation, indicating that the canonical STAT1–STAT2 heterodimers are the primary signaling transducers of type I IFNs in cDCs. Interestingly, LPS-induced production of IL-12 was STAT2 and type I IFN receptor (IFNAR) dependent, whereas LPS-induced production of TNF-α and IL-6 was STAT2 and IFNAR independent, suggesting a specific role of the IFNAR–STAT2 axis in the stimulation of proinflammatory cytokines by LPS in cDCs. In contrast, R848- and CpG-induced cytokine production was less influenced by the IFNAR–STAT2 axis. Short kinetics and IFNAR blockade studies showed that STAT2 main function is to transduce signals triggered by autocrine type I IFNs. Importantly, Stat2−/− cDCs were deficient in cross-presenting to CD8+ T cells in vitro upon IFN-α, CpG, and LPS stimulation, and also in cross-priming and licensing cytotoxic T cell killers in vivo. We conclude that STAT2 plays a critical role in TLR-induced dendritic cell activation and cross-presentation, and thus is vital in host defense.
c Memory/effector T cells efficiently migrate into extralymphoid tissues and sites of infection, providing immunosurveillance and a first line of defense against invading pathogens. Even though it is a potential means to regulate the size, quality, and duration of a tissue infiltrate, T cell egress from infected tissues is poorly understood. Using a mouse model of influenza A virus infection, we found that CD8 effector T cells egressed from the infected lung in a CCR7-dependent manner. In contrast, following antigen recognition, effector CD8 T cell egress decreased and CCR7 function was reduced in vivo and in vitro, indicating that the exit of CD8 T cells from infected tissues is tightly regulated. Our data suggest that the regulation of T cell egress is a mechanism to retain antigen-specific effectors at the site of infection to promote viral clearance, while decreasing the numbers of bystander T cells and preventing overt inflammation.
The Kallikrein–Kinin System (KKS), comprised of kallikreins (klks), bradykinins (BKs) angiotensin-converting enzyme (ACE), and many other molecules, regulates a number of physiological processes, including inflammation, coagulation, angiogenesis, and control of blood pressure. In this report, we show that KKS regulates Type I IFN responses, thought to be important in lupus pathogenesis. We used CpG (TLR9 ligand), R848 (TLR7 ligand), or recombinant IFN-α to induce interferon-stimulated genes (ISGs) and proteins, and observed that this response was markedly diminished by BKs, klk1 (tissue kallikrein), or captopril (an ACE inhibitor). BKs significantly decreased the ISGs induced by TLRs in vitro and in vivo (in normal and lupus-prone mice), and in human PBMCs, especially the induction of Irf7 gene (p < 0.05), the master regulator of Type I IFNs. ISGs induced by IFN-α were also suppressed by the KKS. MHC Class I upregulation, a classic response to Type I IFNs, was reduced by BKs in murine dendritic cells (DCs). BKs decreased phosphorylation of STAT2 molecules that mediate IFN signaling. Among the secreted pro-inflammatory cytokines/chemokines analyzed (IL-6, IL12p70, and CXCL10), the strongest suppressive effect was on CXCL10, a highly Type I IFN-dependent cytokine, upon CpG stimulation, both in normal and lupus-prone DCs. klks that break down into BKs, also suppressed CpG-induced ISGs in murine DCs. Captopril, a drug that inhibits ACE and increases BK, suppressed ISGs, both in mouse DCs and human PBMCs. The effects of BK were reversed with indomethacin (compound that inhibits production of PGE2), suggesting that BK suppression of IFN responses may be mediated via prostaglandins. These results highlight a novel regulatory mechanism in which members of the KKS control the Type I IFN response and suggest a role for modulators of IFNs in the pathogenesis of lupus and interferonopathies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.