Nanoparticle-based diagnosis-therapy integrative systems represent an emerging approach to cancer treatment. However, the diagnostic sensitivity, treatment efficacy, and bioavailability of nanoparticles as well as the heterogeneity and drug resistance of tumors pose tremendous challenges for clinical implementation. We herein report on the fabrication of tumor pH-sensitive magnetic nanogrenades (termed PMNs) composed of self-assembled iron oxide nanoparticles and pH-responsive ligands. These PMNs can readily target tumors via surface-charge switching triggered by the acidic tumor microenvironment, and are further disassembled into a highly active state in acidic subcellular compartments that "turns on" MR contrast, fluorescence and photodynamic therapeutic activity. We successfully visualized small tumors implanted in mice via unique pH-responsive T1MR contrast and fluorescence, demonstrating early stage diagnosis of tumors without using any targeting agents. Furthermore, pH-triggered generation of singlet oxygen enabled pH-dependent photodynamic therapy to selectively kill cancer cells. In particular, we demonstrated the superior therapeutic efficacy of PMNs in highly heterogeneous drug-resistant tumors, showing a great potential for clinical applications.
Nanomaterials
in the size range of 3–50 nm have received
increased attention in the last few decades because they exhibit physical
properties that are intermediate to those of individual molecules
and bulk materials. Similarly, ultrasmall nanoparticles (USNPs), with
sizes in the 1–3 nm range, exhibit unique properties distinct
from those of free molecules and larger-sized nanoparticles. These
properties are greatly sensitive to both the composition and size
of the particles, and thus, the ability to control the synthesis for
both of these variables is of paramount importance. This review summarizes
various methods for the synthesis of USNPs of metals, metal oxides,
and metal chalcogenides as well as recent advances in the development
of unique characterization methods for these USNPs. Last is a discussion
of several novel applications of USNPs in biomedical imaging, catalysis,
and semiconductor development, all of which benefit from the large
surface-to-volume ratio and/or other characteristic properties inherent
in USNPs.
We have developed a self-assembled nanoparticle (NP) that efficiently delivers small interfering RNA (siRNA) to the tumor by intravenous (IV) administration. The NP was obtained by mixing carrier DNA, siRNA, protamine, and lipids, followed by post-modification with polyethylene glycol and a ligand, anisamide. Four hours after IV injection of the formulation into a xenograft model, 70-80% of injected siRNA/g accumulated in the tumor, approximately 10% was detected in the liver and approximately 20% recovered in the lung. Confocal microscopy showed that fluorescent-labeled siRNA was efficiently delivered into the cytoplasm of the sigma receptor expressing NCI-H460 xenograft tumor by the targeted NPs, whereas free siRNA and non-targeted NPs showed little uptake. Three daily injections (1.2 mg/kg) of siRNA formulated in the targeted NPs silenced the epidermal growth factor receptor (EGFR) in the tumor and induced approximately 15% tumor cell apoptosis. Forty percent tumor growth inhibition was achieved by treatment with targeted NPs, while complete inhibition lasted for 1 week when combined with cisplatin. The serum level of liver enzymes and body weight monitoring during the treatment indicated a low level of toxicity of the formulation. The carrier itself also showed little immunotoxicity (IMT).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.