Many inflammatory bowel disease (IBD) patients require surgical intervention due to limited pharmacological treatment options. Antibodies targeting α4ß7, a gut-homing integrin, are one of the most promising IBD treatments. As retinoic acid (RA) regulates expression of gut-homing proteins including α4ß7 integrin, we tested if ALDH1A enzymes in the RA synthesis pathway could be targeted for IBD treatment using a potent inhibitor, WIN 18,446. Age- and sex-matched Smad3−/− mice were fed a diet with and without WIN 18,446 for 3 weeks before triggering inflammation with Helicobacter bilis infection. Colitis was evaluated by histopathology one week following the IBD trigger, and T cell subsets were evaluated before and after the IBD trigger. WIN 18,446 treatment significantly reduced IBD severity in Smad3−/− mice and reduced expression of α4ß7 integrin on multiple activated CD4+ T cell subsets. This change was associated with increased ratios of induced regulatory T cells to Th17 cells during the inflammatory response in the draining lymph nodes. These studies indicate that RA reduction via ALDH1A enzyme inhibition is a potential new target for IBD treatment. Further studies are needed to examine its effects on other types of immune cells, to evaluate the efficacy window for this target, and to determine its efficacy in other animal models of IBD.
Background:
Retinoic acid (RA) controls diverse physiological functions including weight regulation and energy metabolism. It has been reported that mice lacking ALDH1A1, one of the aldehyde dehydrogenases (ALDH) that synthesize RA, are healthy and resistant to weight gain, raising the possibility that inhibiting this enzyme might treat obesity. We previously demonstrated that treatment with a pan-ALDH1A enzyme inhibitor, WIN18446, suppressed weight gain in mice fed a high fat diet (HFD), but caused increased hepatic lipidosis and reversible male infertility.
Methods:
A series of piperazine compounds that inhibited ALDH1A1 were identified and their inhibitory activity was characterized
in vitro
using purified recombinant enzymes and cell-based assay systems. One potent compound, FSI-TN42 (N42) was examined for its oral bioavailability and pharmacodynamic effects. In addition, its effect on weight gain was investigated by daily oral administration to C57BL/6 male mice receiving a HFD, and compared with mice receiving WIN18446 or vehicle alone (n=6/group, 200 mg compound/kg body weight) for 5 weeks. Body weights were measured weekly, and a glucose tolerance test was performed after 4 weeks of treatment. Tissues were collected to determine changes in adipose weight, hepatic lipidosis, retinoid metabolism, and expression of genes associated with RA and lipid metabolism.
Results:
N42 irreversibly binds and inhibits ALDH1A1
in vitro
with a low nM IC
50
and 800-fold specificity for ALDH1A1 compared to ALDH1A2. Daily oral administration of N42 significantly suppressed weight gain (P<0.05) and reduced visceral adiposity (p<0.05) in mice fed a HFD without the hepatic lipidosis observed with WIN18446 treatment.
Conclusions:
We developed a potent and specific inhibitor of ALDH1A1 that suppressed weight gain in mice fed a HFD. These findings demonstrate that inhibition of ALDH1A1 is a feasible target for drug development to treat and/or prevent obesity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.