GeoScience Victoria and partners have undertaken the first detailed basin-wide study of the regional top seal in the Gippsland Basin. The Gippsland Basin is an attractive site for geological carbon storage (GCS) because of the close proximity to emission sources and the potential for large-scale storage projects. This top seal assessment involved the analysis of seal attributes (geometry, capacity and mineralogy) and empirical evidence for seal failure (soil gas geochemical anomalies, gas chimneys, hydrocarbon seepage and oil slicks). These datasets have been integrated to produce a qualitative evaluation of the containment potential for GCS, and also hydrocarbons, across the basin. Mineralogical analysis of the top seal has revealed that the Lakes Entrance Formation is principally a smectite-rich claystone. The geometry of the top seal is consistent with deposition in an early post-rift setting where marine sediments filled palaeo-topographic lows. The seal thickness and depth to seal base are greatest in the Central Deep and decrease toward the margins. There is a strong positive relationship between seal capacity column heights, seal thickness, depth to seal base and smectite content. At greater burial depths (below 700 m) and where smectite content is greater than 70%, seal capacity is increased (supportable column heights above 150 m). Natural hydrocarbon leakage and seepage onshore and offshore is correlated with fault distribution and areas of poor seal capacity. This study provides a framework for qualitatively evaluating seal potential at a basin scale. It has shown that the potential of the regional top seal over the Central Deep, Southern Terrace, central eastern Lake Wellington Depression and the southern to central near shore areas in the Seaspray Depression are most suitable for the containment of supercritical CO2. Further toward the margin of the regional seal in both onshore and offshore areas, containment of supercritical CO2 is less likely.
As part of a larger petroleum system analysis and resource re-evaluation research program in the Gippsland Basin, over 400 samples from 29 selected wells in the Gippsland Basin were investigated using quantitative fluorescence techniques developed by CSIRO Petroleum, including the quantitative grain fluorescence (QGF) and QGF on extracts (QGF-E) and the total scanning fluorescence (TSF) techniques. Preliminary results have provided new insight into the hydrocarbon migration and charge history of the Gippsland Basin.
The investigation has revealed:
widespread occurrence of palaeo oil columns in some of the major gas fields, indicating that a significant amount of oil was charged into these reservoirs prior to a subsequent gas accumulation;
that some of the current oil intervals appear to have received a relatively late oil charge, either through new charge or through palaeo oil re-distribution due to adjustments within the petroleum system;
palaeo oil columns appear to be restricted to a certain distance range from the major source kitchens; and,
evidence of a sequential oil migration and displacement along structural highs where reservoirs distal to the source kitchens received progressively lighter and more mature palaeo oils.
These findings are consistent with the oil generation and migration model proposed by O’Brien et al (2008). Fluid inclusion petrographic investigations and molecular composition of inclusions (MCI) analysis are currently underway that will provide additional information on the hydrocarbon charge history in the Gippsland Basin.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.