Abstract-Evaluating the performance (timing behavior, throughput, and resource utilization) of a software system becomes more and more challenging as today's enterprise applications are built on a large basis of existing software (e.g. middleware, legacy applications, and third party services). As the performance of a system is affected by multiple factors on each layer of the system, performance analysts require detailed knowledge about the system under test and have to deal with a huge number of tools for benchmarking, monitoring, and analyzing. In practice, performance analysts try to handle the complexity by focusing on certain aspects, tools, or technologies. However, these isolated solutions are inefficient due to the small reuse and knowledge sharing. The Performance Cockpit presented in this paper is a framework that encapsulates knowledge about performance engineering, the system under test, and analyses in a single application by providing a flexible, plug-in based architecture. We demonstrate the value of the framework by means of two different case studies.
We consider a perforated half-cylindrical thin shell and investigate the limit behavior
when the period and the thickness simultaneously go to zero. By using the decomposition of shell
displacements presented in [12] we obtain a priori estimates. With the unfolding and rescaling
operator we transform the problem to a reference configuration. In the end this yields a homogenized
limit problem for the shell.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.