Magnetic particle imaging (MPI) is a novel tracer-based in vivo imaging modality allowing quantitative measurements of the spatial distributions of superparamagnetic iron oxide (SPIO) nanoparticles in three dimensions (3D) and in real time using electromagnetic fields. However, MPI lacks the detection of morphological information which makes it difficult to unambiguously assign spatial SPIO distributions to actual organ structures. To compensate for this, a preclinical highly integrated hybrid system combining MPI and Magnetic Resonance Imaging (MRI) has been designed and gets characterized in this work. This hybrid MPI-MRI system offers a high grade of integration with respect to its hard- and software and enables sequential measurements of MPI and MRI within one seamless study and without the need for object repositioning. Therefore, time-resolved measurements of SPIO distributions acquired with MPI as well as morphological and functional information acquired with MRI can be combined with high spatial co-registration accuracy. With this initial phantom study, the feasibility of a highly integrated MPI-MRI hybrid systems has been proven successfully. This will enable dual-modal in vivo preclinical investigations of mice and rats with high confidence of success, offering the unique feature of precise MPI FOV planning on the basis of MRI data and vice versa.
In magnetic particle imaging (MPI), the spatial distribution of magnetic nanoparticles is determined by applying various static and dynamic magnetic fields. Due to the complex physical behavior of the nanoparticles, it is challenging to determine the MPI system matrix in practice. Since the first publication on MPI in 2005, different methods that rely on measurements or simulations for the determination of the MPI system matrix have been proposed. Some methods restrict the simulation to an idealized model to speed up data reconstruction by exploiting the structure of an idealized MPI system matrix. Recently, a method that processes the measurement data in x-space rather than frequency space has been proposed. In this work, we compare the different approaches for image reconstruction in MPI and show that the x-space and the frequency space reconstruction techniques are equivalent.
This study evaluates the performance of the Bruker PET insert combined with a BioSpec 70/30 USR MRI scanner using the manufacturer acceptance protocol and the NEMA NU 4-2008 for small animal positron emission tomographs (PET). The PET insert is made of 3 rings of 8 monolithic LYSO crystals (50 x 50 x 10 mm 3 ) coupled to silicon photomultipliers (SiPM) arrays, conferring an axial and transaxial FOV of 15 cm and 8 cm. The MRI performance was evaluated with and without the insert for the following radiofrequency noise, magnetic field homogeneity and image quality. For the PET performance, we extended the NEMA protocol featuring system sensitivity, count rates, spatial resolution and image quality to homogeneity and accuracy for quantification using several MRI sequences (RARE, FLASH, EPI and UTE). The PET insert does not show any adverse effect on the MRI performances. The MR field homogeneity is well preserved (Diameter Spherical Volume, for 20 mm of 1.98 ± 4.78 without and -0.96 ± 5.16 Hz with the PET insert). The PET insert has no major effect on the radiofrequency field. The SNR measurements also do not show major differences. Image ghosting is well within the manufacturer specifications (<2.5%) and no RF noise is visible. Maximum sensitivity of the PET insert is 11.0% at the center of the FOV even with simultaneous acquisition of EPI and RARE. PET MLEM resolution is 0.87 mm (FWHM) at 5 mm off-center of the FOV and 0.97 mm at 25 mm radial offset. The peaks for true/noise equivalent count rates are 410/240 and 628/486 kcps for the rat and mouse phantoms, and are reached at 30.34/22.85 and 27.94/22.58 MBq. PET image quality is minimally altered by the different MRI sequences. The Bruker PET insert shows no adverse effect on the MRI performance and demonstrated a high sensitivity, sub-millimeter resolution and good image quality even during simultaneous MRI acquisition.
This analysis of a large, prospectively collected and validated multicenter database indicates that GA for CEA is an independent risk factor for postoperative MI, particularly in patients with preoperative neurologic symptoms.
Magnetic particle imaging (MPI) is able to provide high temporal and good spatial resolution, high signal to noise ratio and sensitivity. Furthermore, it is a truly quantitative method as its signal strength is proportional to the concentration of its tracer, superparamagnetic iron oxide nanoparticles (SPIOs), over a wide range practically relevant concentrations. Thus, MPI is proposed as a promising future method for guidance of vascular interventions. To implement this, devices such as guide wires and catheters have to be discernible in MPI, which can be achieved by coating already commercially available devices with SPIOs. In this proof of principle study the feasibility of that approach is demonstrated. First, a Ferucarbotran-based SPIO-varnish was developed by embedding Ferucarbotran into an organic based solvent. Subsequently, the biocompatible varnish was applied to a commercially available guidewire and diagnostic catheter for vascular interventional purposes. In an interventional setting using a vessel phantom, the coating proved to be mechanically and chemically stable and thin enough to ensure normal handling as with uncoated devices. The devices were visualized in 3D on a preclinical MPI demonstrator using a system function based image reconstruction process. The system function was acquired with a probe of the dried varnish prior to the measurements. The devices were visualized with a very high temporal resolution and a simple catheter/guide wire maneuver was demonstrated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.