Background-T cell responses to normal intestinal bacteria or their products may be important in the immunopathogenesis of chronic enterocolitis. Aims-To investigate the T cell specificity and cross reactivity towards intestinal bacteria. Patients/Methods-T cell clones were isolated with phytohaemagglutinin from peripheral blood and biopsy specimens of inflamed and non-inflamed colon from five patients with inflammatory bowel disease (IBD) and two controls. T cell clones were restimulated with anaerobic Bacteroides and Bifidobacteria species, enterobacteria, and direct isolates of aerobic intestinal flora. T cell phenotype was analysed by single-cell immunocyte assay. Results-Analysis of 96 T cell clones isolated from peripheral blood and biopsy specimens from two patients with IBD showed that both Bifidobacterium and Bacteroides species specifically stimulate proliferation of CD4+TCR + T cell clones from both sites and that cross reactivity exists between these anaerobic bacteria and diVerent enterobacteria. Analysis of 210 T cell clones isolated from three patients with IBD and two controls showed that indigenous aerobic flora specifically stimulate T cell clones from peripheral blood and biopsy specimens from a foreign subject. Some of these flora specific T cell clones were cross reactive with defined enterobacteria. In addition, T cell clones stimulated by their own indigenous aerobic flora were identified in patients with IBD. Conclusion-Immune responses to antigens from the intestinal microflora involve a complex network of T cell specificities. (Gut 1999;44:812-818)
One essential immunoregulatory function of heat shock protein (HSP) is activation of the innate immune system. We investigated the activation of human monocytes and monocyte-derived dendritic cells (DC) by recombinant human HSP60, human inducible HSP72, and preparations of human gp96 and HSP70 under stringent conditions, in the absence of serum and with highly purified monocytes. HSP60 induced human DC maturation and activated human DC to secrete proinflammatory cytokines. HSP72 induced DC maturation to a lesser extent, but activated human monocytes and immature DC as efficiently as HSP60 to release proinflammatory cytokines. The independence of the effects of HSP60 and HSP72 from endotoxin or another copurifying bacterial component was shown by the resistance of these effects to polymyxin B, their sensitivity to heat treatment, the inactivity of endotoxin controls at concentrations up to 100-fold above the endotoxin contents of the HSP, and the inactivity of a recombinant control protein. Preparations of HSP70, which consisted mainly of the constitutively expressed HSP73, induced only marginal cytokine release from monocytes. The gp96 preparations did not have significant effects on human monocytes and monocyte-derived DC, indicating that these human APC populations were not susceptible to gp96 signaling under the stringent conditions applied in this study. The biological activities of gp96 and HSP70 preparations were confirmed by their peptide binding activity. These findings show that HSP can differ considerably in the capacity to activate monocyte-derived APC under certain conditions and underline the potential of HSP60 and HSP72 as activation signals for the innate immune system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.