In western boundary current systems, sharp velocity gradients between the poleward flowing jet and coastal waters generally act to inhibit cross‐shelf exchange. Downstream of jet separation, dynamic mesoscale eddies dominate the flow. In the East Australian Current System, counter‐rotating eddy dipoles are often present which, in the appropriate configuration, have potential to drive cross‐shelf transport. However, this eddy dipole mode is poorly understood in the framework of cross‐shelf exchange and the effect of these structures on shelf waters is uncertain. Using 25 years of satellite altimetry, as well as in situ sampling of a typical dipole event, we investigate the characteristics of eddy‐driven cross‐shelf exchange. We show that the maximum onshore velocity is driven by an eddy dipole structure and occurs in a defined latitudinal band between 33°S and 34°S more than 50% of the time. We sample a typical eddy dipole and find a strong onshore jet, 37 km wide, with velocities up to 1.78 m s −1 and a transport of at least 16 Sv. Hydrographic data from an autonomous underwater glider show that this jet manifests on the shelf as a subsurface intrusion of warm salty water extending from offshore up onto the midshelf. In the light of climatic changes in western boundary current transport and the increase in their eddy kinetic energy, understanding eddy‐driven cross‐shelf exchange is important to predict future changes to the shelf water mass.
Abstract. The observational part of the REP14-MED experiment was conducted in June 2014 in the Sardo-Balearic Sea west of Sardinia Island (Western Mediterranean Sea). Two research vessels collected high-resolution oceanographic data by means of hydrographic casts, towed systems, and underway measurements. In addition, a vast amount of data was provided by a fleet of 11 gliders, time series were available from moored instruments, and information on Lagrangian flow patterns were obtained from surface drifters and one profiling float. The spatial resolution of the observations encompasses a spectrum over four orders of magnitude from O(101 m) to O(105 m), and the time series from the moored instruments cover a spectral range of five orders from O(101 s) to O(106 s). The objective of this article is to provide an overview of the huge data set which is utilized by various ongoing studies, focusing on (i) sub-mesoscale and mesoscale pattern analyses, (ii) operational forecasting in terms of the development and assessment of sampling strategies, assimilation methods, and model validation, (iii) modeling the variability of the ocean, and (iv) testing of new payloads for gliders.
Abstract. Autonomous underwater gliders offer the capability of measuring oceanic parameters continuously at high resolution in both vertical and horizontal planes, with timescales that can extend to many months. An experimental ionsensitive field-effect transistor (ISFET) sensor measuring pH on the total scale was attached to a glider during the REP14-MED experiment in June 2014 in the Sardinian Sea in the northwestern Mediterranean. During the deployment, pH was sampled at depths of up to 1000 m along an 80 km transect over a period of 12 days. Water samples were collected from a nearby ship and analysed for dissolved inorganic carbon concentration and total alkalinity to derive the pH for validating the ISFET sensor measurements. The vertical resolution of the pH sensor was good (1 to 2 m), but stability was poor and the sensor drifted in a non-monotonous fashion. In order to remove the sensor drift, a depth-constant time-varying offset was applied throughout the water column for each dive, reducing the spread of the data by approximately two-thirds. Furthermore, the ISFET sensor required temperature-and pressure-based corrections, which were achieved using linear regression. Correcting for this decreased the apparent sensor pH variability by a further 13 to 31 %. Sunlight caused an apparent sensor pH decrease of up to 0.1 in surface waters around local noon, highlighting the importance of shielding the sensor from light in future deployments. The corrected pH from the ISFET sensor is presented along with potential temperature, salinity, potential density anomalies (σ θ ), and dissolved oxygen concentrations (c(O 2 )) measured by the glider, providing insights into the physical and biogeochemical variability in the Sardinian Sea. The pH maxima were identified close to the depth of the summer chlorophyll maximum, where high c(O 2 ) values were also found. Longitudinal pH variations at depth (σ θ > 28.8 kg m −3 ) highlighted the variability of water masses in the Sardinian Sea. Higher pH was observed where salinity was > 38.65, and lower pH was found where salinity ranged between 38.3 and 38.65. The higher pH was associated with saltier Levantine Intermediate Water, and it is possible that the lower pH was related to the remineralisation of organic matter. Furthermore, shoaling isopycnals closer to shore coinciding with low pH and c(O 2 ), high salinity, alkalinity, dissolved inorganic carbon concentrations, and chlorophyll fluorescence waters may be indicative of upwelling.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.