Abstract. Floods including intensive bedload transport represent a severe hazard to the often densely populated alluvial fans of small Alpine watersheds. In order to minimize the risk of future inundation, an existing bedload deposition area on the fan upstream of the village Vorderberg in southern Austria is planned for reconstruction. The suggested concept for protection measures includes dividing the area into three similar sections of reduced slope. The three sections are to be separated by a block ramp. To test this concept and to optimize the sedimentation process, an analysis was performed by using both a physical scale model (1:30) and a numerical simulation tool (SETRAC). Four configurations for the section-outlet were tested based on three flood scenarios. The results support the general protection concept and suggest a minimum construction configuration, including a woody debris filter. Employing a physical scale model for analysing small watershed processes is rarely found in literature. This contribution represents an applied study and provides quantitative information on bedload deposition and outflow from a deposition area. We test a novel simulation tool for bedload transport on the steep slopes against the measurements in the laboratory and show that the combination of physical and numerical modelling is a valuable tool to evaluate the efficiency of planned measures for torrent hazard mitigation.
Retention of suspended particles by settling is among the main physical treatment processes in constructed wetland ponds. Laboratory experiments were conducted to study the transport and deposition of suspended particles in the slow, near-stagnant flows typical of constructed wetland ponds with emergent vegetation. The presence of stems was found to create a velocity field which is much more uniform than its counterpart without vegetation. This property was used to obtain an approximate mathematical model, for which an analytical solution could be given to describe sediment transport and deposition. The deposition rates predicted by this formula were compared to the data from the above-mentioned laboratory experiments and found to agree closely.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.