We tested the general applicability of in situ proteolysis to form protein crystals suitable for structure determination by adding a protease (chymotrypsin or trypsin) digestion step to crystallization trials of 55 bacterial and 14 human proteins that had proven recalcitrant to our best efforts at crystallization or structure determination. This is a work in progress; so far we determined structures of 9 bacterial proteins and the human aminoimidazole ribonucleotide synthetase (AIRS) domain.
Evasion of apoptosis is recognized as a characteristic of malignant growth. Anti-apoptotic B-cell lymphoma-2 (Bcl-2) family members have therefore emerged as potential therapeutic targets due to their critical role in proliferating cancer cells. Here, we present the crystal structure of Bfl-1, the last antiapoptotic Bcl-2 family member to be structurally characterized, in complex with a peptide corresponding to the BH3 region of the pro-apoptotic protein Bim. The structure reveals distinct features at the peptide-binding site, likely to define the binding specificity for pro-apoptotic proteins. Superposition of the Bfl-1:Bim complex with that of Mcl-1:Bim reveals a significant local plasticity of hydrophobic interactions contributed by the Bim peptide, likely to be the basis for the multi specificity of Bim for antiapoptotic proteins.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.