We study the vibrational behavior of silicon membranes with a thickness of a few hundred nanometers and macroscopic lateral size. A piezo is used to couple in transverse vibrations, which we monitor with a phase-shift interferometer using stroboscopic light. The observed wave pattern of the membrane deflection is a superposition of the mode corresponding to the excitation frequency and several higher harmonics. Using a Fourier transformation in time, we separate these contributions and image up to the eighth harmonic of the excitation frequency. With this method we determine the dispersion relation of membrane oscillations in a frequency range up to 12 MHz. We develop a simple analytical model combining stress of a membrane and bending of a thin plate that describes both the experimental data and finite-elements simulations very well. We derive correction terms to account for a finite curvature of the membrane and for the inertia of the surrounding atmosphere. A simple criterion for the transition between stressed membrane and thin plate behavior is presented.
The mode shape of bending waves in thin silicon and silicon carbide membranes is measured as a function of space and time, using a phase shift interferometer with stroboscopic light. The mode shapes hold information about all the relevant mechanical parameters of the samples, including the spatial distribution of static prestress. We present a simple algorithm to obtain a map of the lateral tensor components of the prestress, with a spatial resolution much better than the wavelength of the bending waves. The method is not limited to measuring the stress of bending waves. It is applicable in almost any situation, where the fields determining the state of the system can be measured as a function of space and time.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.