Hydroxide anion conducting solid polymer membranes, also termed anion exchange membranes, are becoming important materials for electrochemical technology, and activity in this field, spurred by renewed interest in alkaline fuel cells, is experiencing a resurgence. Solid polymer anion exchange membranes enable alkaline electrochemistry in devices such as fuel cells and electrolyzers and serve as a counterpoint to proton exchange membranes, of which there is a large body of literature. For their seeming importance, the details of transport in alkaline exchange membranes has not been explored thoroughly. In this work, a chloromethylated polymer with a polysulfone backbone was synthesized. 1 H NMR spectroscopy was performed to determine the chloromethyl content and its position on the polymer structure. The chloromethylated polymer was solution cast to form clear, creasable films, and subsequent soaking of these films in aqueous trimethylamine gave benzyltrimethylammonium groups. The resulting anion exchange membranes swell in water and show varying degrees of ionic conductivity depending on their ion exchange capacity. The water mobility in the anion exchange membranes was greater than in previously studied proton exchange membranes; however, the transport properties in these new materials were lower than what might have been expected from the water behavior. This comparison gives some insight as to future anion exchange membrane design objectives.
Cationic polymer membranes that conduct free anions comprise an enabling area of research for alkaline membrane fuel cells and other solid-state electrochemical devices that operate at high pH. The synthesis of anion exchange membranes based on a poly(phenylene) backbone prepared by a Diels-Alder reaction is demonstrated. The poly(phenylene)s have benzylic methyl groups that are converted to bromomethyl groups by a radical reaction. Cationic polymers result from conversion of the bromomethyl groups to ionic moieties by quaternization with trimethylamine in the solid state. The conversion to benzyltrimethylammonium groups is incomplete as evidenced by the differences between the IEC values measured by titration and the theoretical IECs based on 1 H NMR measurements. The anion exchange membranes formed from these polymers have hydroxide ion conductivities as high as 50 mS/cm in liquid water, and they are stable under highly basic conditions at elevated temperatures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.