In rat hippocampal slices superfused with magnesium-free buffer, glutamate (1 mM) caused the release of large amounts of choline due to phospholipid breakdown. This phenomenon was mimicked by N-methyl-D-aspartate (NMDA) in a calcium-sensitive manner and was blocked by NMDA receptor antagonists such as MK-801 and 7-chlorokynurenate. The NMDA-induced release of choline was not caused by activation of phospholipase D but was mediated by phospholipase A2 (PLA2) activation as the release of choline was accompanied by the formation of lyso-phosphatidylcholine (lyso-PC) and glycerophospho-choline (GPCh) and was blocked by 5-[2-(2-carboxyethyl)-4-dodecanoyl-3,5-dimethylpyrrol-1-yl]pentano ic acid, a PLA2 inhibitor. Bilobalide, a constituent of Ginkgo biloba, inhibited the NMDA-induced efflux of choline with an IC50 value of 2.3 microM and also prevented the formation of lyso-PC and GPCh. NMDA also caused a release of choline in vivo when infused into the hippocampus of freely moving rats by retrograde dialysis. Again, the effect was completely inhibited by bilobalide which was administered systemically (20 mg/kg i.p.). Interestingly, convulsions which were observed in the NMDA-treated rats were almost totally suppressed by bilobalide. We conclude that release of choline is a sensitive marker for NMDA-induced phospholipase A2 activation and phospholipid breakdown. Bilobalide inhibited the glutamatergic excitotoxic membrane breakdown both in vitro and in vivo, an effect which may be beneficial in the treatment of brain hypoxia and/or neuronal hyperactivity.
Adult female rats sustained aspirative fimbria-fornix lesions and, 2 weeks later, received intrahippocampal grafts of fetal septal or mixed septal-raphe cell suspensions. Twenty-four months later, the extracellular concentration of hippocampal acetylcholine (ACh) was determined by microdialysis. Basal ACh levels (5-65 fmol/5 microl sham-operated rats) were strongly reduced after lesioning (3-7 fmol/5 microl). In septally transplanted and septal-raphe co-transplanted rats, hippocampal ACh concentrations were restored to near-normal levels (15-25 fmol/5 microl), indicating long-term functional survival of hippocampal transplants. After administration of citalopram (100 microM by infusion) and fenfluramine (20 mg/kg i.p.), the hippocampal ACh efflux was increased by 2- to 3-fold in all groups of rats. The relative increase of ACh was highest in co-transplanted rats, an effect which was possibly due to functional interactions between grafted raphe and septal neurons.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.