Identification and further characterization of antibody charge variants is a crucial step during biopharmaceutical drug development, particularly with regard to the increasing complexity of novel antibody formats. As a standard analytical approach, manual offline fractionation of charge variants by cation-exchange chromatography followed by comprehensive analytical testing is applied. These conventional workflows are time-consuming and labor-intensive and overall reach their limits in terms of chromatographic separation of enhanced structural heterogeneities raised from new antibody formats. For these reasons, we aimed to develop an alternative online characterization strategy for charge variant characterization of a therapeutic bispecific antibody by online mD-LC-MS at middle-up (2D-LC-MS) and bottom-up (4D-LC-MS) level. Using the implemented online mD-LC-MS approach, all medium-and even low-abundant product variants previously identified by offline fraction experiments and liquid chromatography mass spectrometry could be monitored. The herein reported automated online mD-LC-MS methodology therefore represents a complementary and in part alternative approach for analytical method validation including multiattribute monitoring (MAM) strategies by mass spectrometry, offering various benefits including increased throughput and reduced sample handling and combined protein information at intact protein and peptide level.
In recent years, a variety of new antibody formats have been developed. One of these formats allows the binding of one type of antibody to two different epitopes. This can for example be achieved by introduction of the “knob-into-hole” format and a combined CrossMab approach. Due to their complexity, these bispecific antibodies are expected to result in an enhanced variety of different degradation products. Reports on the stability of these molecules are still largely lacking. To address this, a panel of stress conditions, including elevated temperature, pH, oxidizing agents, and forced glycation via glucose incubation, to identify and functionally evaluate critical quality attributes in the complementary-determining and conserved regions of a bispecific antibody was applied in this study. The exertion of various stress conditions combined with an assessment by size exclusion chromatography, ion exchange chromatography, LC–MS/MS peptide mapping, and functional evaluation by cell-based assays was adequate to identify chemical modification sites and assess the stability and integrity, as well as the functionality of a bispecific antibody. Stress conditions induced size variants and post-translational modifications, such as isomerization, deamidation, and oxidation, albeit to a modest extent. Of note, all the observed stress conditions largely maintained functionality. In summary, this study revealed the pronounced stability of IgG1 “knob-into-hole” bispecific CrossMab antibodies compared to already marketed antibody products.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.