Internal stresses or residual stresses remain in almost every part after manufacturing and/or further processing. Even if the entire stress state inside a system is in an equilibrium, single stresses due to their direction and strength may have positive or negative influences to the properties of a body. Especially in big parts, the residual stress state is relatively unknown, because it can only be determined by destructive methods as sectioning or slitting. The possibility of the use of non destructive measuring methods is only given for surface near regions or thin parts and not useful for the specification of the entire residual stress state inside a large compound work roll. This paper outlines an approach for the determination of residual stresses in centrifugal casted work rolls with an indefinite chill double poured or high speed steel shell. In several steps, different measurement techniques are tested and the results are to be presented. Beside the residual stress state, which is caused by manufacturing or heat treatment, these work rolls with different shell and core material differ in their thermophysical and elastic properties. These parameters in combination with the residual stress state and the thermal and load stresses, which arise during the hot rolling process, are causing a complex stress field that is presented by a combined model for work and backup rolls in operation.
A stress analysis for cast compound rolls is presented. Stress is divided into components as residual stress, stress implied by load, stress implied by torque, Hertz’ian contact stress and thermal stress. Furthermore, heat transfer is considered. Residual stress is measured and a 3D representation is given. All further stress components are calculated by FEM calculations. The data allow a complete description of the roll behavior in operation.
The resistance of a modern ceramic material -silicon nitride -was examined by cyclical high temperature and compressive loads by the use of warm upsetting tests at cylindrical molybdenum and wolfram samples. Furthermore, flow curves of these samples were determined for different temperatures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.