a b s t r a c tMeasures for the accuracy assessment of Digital Elevation Models (DEMs) are discussed and characteristics of DEMs derived from laser scanning and automated photogrammetry are presented. Such DEMs are very dense and relatively accurate in open terrain. Built-up and wooded areas, however, need automated filtering and classification in order to generate terrain (bare earth) data when Digital Terrain Models (DTMs) have to be produced. Automated processing of the raw data is not always successful. Systematic errors and many outliers at both methods (laser scanning and digital photogrammetry) may therefore be present in the data sets. We discuss requirements for the reference data with respect to accuracy and propose robust statistical methods as accuracy measures. Their use is illustrated by application at four practical examples. It is concluded that measures such as median, normalized median absolute deviation, and sample quantiles should be used in the accuracy assessment of such DEMs. Furthermore, the question is discussed how large a sample size is needed in order to obtain sufficiently precise estimates of the new accuracy measures and relevant formulae are presented.
Our investigations identified sprouts as the most likely outbreak vehicle, underlining the need to take into account food items that may be overlooked during subjects' recall of consumption.
A framework for the statistical analysis of counts from infectious disease surveillance databases is proposed. In its simplest form, the model can be seen as a Poisson branching process model with immigration. Extensions to include seasonal effects, time trends and overdispersion are outlined. The model is shown to provide an adequate fit and reliable one-step-ahead prediction intervals for a typical infectious disease time series. In addition, a multivariate formulation is proposed, which is well suited to capture space-time dependence caused by the spatial spread of a disease over time. An analysis of two multivariate time series is described. All analyses have been done using general optimization routines, where ML estimates and corresponding standard errors are readily available.
We assessed hepatitis E virus (HEV) antibody seroprevalence in a sample of the adult population in Germany. Overall HEV IgG prevalence was 16.8% (95% CI 15.6%–17.9%) and increased with age, leveling off at >60 years of age. HEV is endemic in Germany, and the lifetime risk for exposure is high.
The availability of geocoded health data and the inherent temporal structure of communicable diseases have led to an increased interest in statistical models and software for spatio-temporal data with epidemic features. The open source R package surveillance can handle various levels of aggregation at which infective events have been recorded: individual-level time-stamped geo-referenced data (case reports) in either continuous space or discrete space, as well as counts aggregated by period and region. For each of these data types, the surveillance package implements tools for visualization, likelihoood inference and simulation from recently developed statistical regression frameworks capturing endemic and epidemic dynamics. Altogether, this paper is a guide to the spatio-temporal modeling of epidemic phenomena, exemplified by analyses of public health surveillance data on measles and invasive meningococcal disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.