Paracrine signalling between the oocyte and its surrounding somatic cells is fundamental to the processes of oogenesis and folliculogenesis in mammals. The study of animal models has revealed that the interaction of granulosa cell-derived kit ligand (KL) with oocyte and theca cell-derived c-Kit is important for multiple aspects of oocyte and follicle development, including the establishment of primordial germ cells within the ovary, primordial follicle activation, oocyte survival and growth, granulosa cell proliferation, theca cell recruitment and the maintenance of meiotic arrest. Though little is known about the specific roles of KL and c-Kit during human oogenesis, the expression profiles for KL and c-Kit within the human ovary suggest that they are also functionally relevant to female fertility. This review details our current understanding of the roles of KL and c-Kit within the mammalian ovary, with a particular focus on the functional diversity of this receptor-ligand interaction at different stages of oocyte and follicle development.
Three murine epididymal secretory proteins have been characterized by their site of synthesis, sperm association, and tissue localization by use of polyclonal antisera and immunochemistry. Mouse epididymal protein 7 (MEP 7) was localized initially within the supranuclear regions of some principal epithelial cells in the proximal corpus while other cells remained unstained. In the mid-proximal corpus, all principal cells and stereocilia were stained, and luminal staining increased from corpus to cauda. Some clear cells in the distal corpus and cauda also showed immunoperoxidase staining. Sequential extraction of caudal spermatozoa indicated that MEP 7 was predominantly loosely associated with spermatozoa and that only a small amount of MEP 7 required detergent to extract it from spermatozoa. Examination of other rodent caudal fluids revealed a related protein in rat caudal fluid of 32 kDa, and amino acid sequence analysis of MEP 7 showed a 68% sequence similarity with rat proteins AEG and D/E. MEP 9 immunolocalized within the cytoplasm of all principal cells of the distal caput. In a transition zone between the distal caput and the corpus, some principal cells were stained while others were not. Distal to the corpus, the principal cell staining gradually decreased. In the distal caput and proximal corpus, large heavily stained droplets associated with spermatozoa were seen in the lumen. The staining intensity of these droplets also decreased from corpus to cauda. The clear cells of the distal corpus and cauda did not stain with the antibody to MEP 9. Sequential extraction of caudal spermatozoa showed that some MEP 9 was extractable under low-salt conditions, whereas extraction with 0.1% Triton X-100 was required to remove all MEP 9, indicating it was firmly associated with spermatozoa. The antibody to MEP 9 cross-reacted with a 25-kDa protein present in rat caudal fluid. MEP 10 was localized within the cytoplasm of the principal cells, the stereocilia, and the lumen of the epididymis at the junction of the distal caput and corpus. In the distal corpus, a large number of clear cells were stained, but very few of these cells stained in the cauda. MEP 10 dissociated completely from caudal spermatozoa under low-salt conditions, indicating that it was not firmly bound to spermatozoa. The antiserum to MEP 10 cross-reacted with proteins present in rat and guinea pig caudal fluid. The related rat protein migrated at approximately 20 kDa. Amino acid sequence analysis of MEP 10 revealed an 86% sequence similarity with rat proteins B and C.(ABSTRACT TRUNCATED AT 400 WORDS)
In rodent ovaries Kit ligand (KITL) and its receptor KIT have diverse roles, including the promotion of primordial follicle activation, oocyte growth, and follicle survival. Studies were undertaken to determine whether KITL and KIT carry out similar activities in rabbits. KitlandKitmRNA and protein were localized to oocytes and granulosa cells, respectively, in the rabbit ovary. Ovarian cortical explants from juvenile rabbits and neonatal mouse ovaries were subsequently cultured with recombinant mouse KITL and/or KITL neutralizing antibody. Indices of follicle growth initiation were compared with controls and between treatment groups for each species. Recombinant mouse KITL had no stimulatory effect on primordial follicle recruitment in cultured rabbit ovarian explants. However, the mean diameter of oocytes from primordial, early primary, primary, and growing primary follicles increased significantly in recombinant mouse KITL-treated explants compared with untreated tissues. In contrast, recombinant mouse KITL promoted both primordial follicle activation and an increase in the diameter of oocytes from primordial and early primary follicles in the mouse, and these effects were inhibited by coculture with KITL-neutralizing antibody. Recombinant mouse KITL had no effect on follicle survival for either species. These data demonstrate that KITL promotes the growth of rabbit and mouse oocytes and stimulates primordial follicle activation in the mouse but not in the rabbit. We propose that the physiologic roles of KITL and KIT may differ between species, and this has important implications for the design of in vitro culture systems for folliculogenesis in mammals, including the human.
While the mechanisms that underpin maturation, capacitation, and sperm-egg interactions remain elusive it is known that these essential fertilisation events are driven by the protein complement of the sperm surface. Understanding these processes is critical to the regulation of animal reproduction, but few studies have attempted to define the full repertoire of sperm surface proteins in animals of agricultural importance. Recent developments in proteomics technologies, subcellular fractionation, and optimised solubilisation strategies have enhanced the potential for the comprehensive characterisation of the sperm surface proteome. Here we report the identification of 419 proteins from a mature bull sperm plasma membrane fraction. Protein domain enrichment analyses indicate that 67% of all the proteins identified may be membrane associated. A large number of the proteins identified are conserved between mammalian species and are reported to play key roles in sperm-egg communication, capacitation and fertility. The major functional pathways identified were related to protein catabolism (26S proteasome complex), chaperonin-containing TCP-1 (CCT) complex and fundamental metabolic processes such as glycolysis and energy production. We have also identified 118 predicted transmembrane proteins, some of which are implicated in cell adhesion, acrosomal exocytosis, vesicle transport and immunity and fertilisation events, while others have not been reported in mammalian LC-MS-derived sperm proteomes to date. Comparative proteomics and functional network analyses of these proteins expand our system's level of understanding of the bull sperm proteome and provide important clues toward finding the essential conserved function of these proteins.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.