We report on recent work on the equation of state and pairing gap of neutron matter and cold atomic systems. Results of quantum Monte Carlo calculations show that the equations of state are very similar. The neutron matter pairing gap at low densities is found to be very large but, except at the smallest densities, significantly suppressed relative to cold atoms. We also discuss recent attempts to measure and extract the pairing gap in the fully paired superftuid state at unitarity.
Environmental exposure to the oxidant-producing herbicide paraquat has been implicated as a risk factor in Parkinson's disease. Although intraperitoneal paraquat injections in mice cause a selective loss of dopaminergic neurons in the substantia nigra pars compacta, the exact mechanism involved is still poorly understood. Our data show that paraquat induces the sequential phosphorylation of c-Jun N-terminal kinase (JNK) and c-Jun and the activation of caspase-3 and sequential neuronal death both in vitro and in vivo. These effects are diminished by the specific JNK inhibitor SP600125 and the antioxidant manganese(III) tetrakis (4-benzoic acid) porphyrin in vitro. Furthermore, JNK pathway inhibitor CEP-11004 effectively blocks paraquat-induced dopaminergic neuronal death in vivo. These results suggest that the JNK signaling cascade is a direct activator of the paraquatmediated nigral dopaminergic neuronal apoptotic machinery and provides a molecular linkage between oxidative stress and neuronal apoptosis.
Muscle stem (satellite) cells are relatively resistant to cell-autonomous aging. Instead, their endogenous signaling profile and regenerative capacity is strongly influenced by the aged P-Smad3, differentiated niche, and by the aged circulation. With respect to muscle fibers, we previously established that a shift from active Notch to excessive transforming growth factor-beta (TGF-β) induces CDK inhibitors in satellite cells, thereby interfering with productive myogenic responses. In contrast, the systemic inhibitor of muscle repair, elevated in old sera, was suggested to be Wnt. Here, we examined the age-dependent myogenic activity of sera TGF-β1, and its potential cross-talk with systemic Wnt. We found that sera TGF-β1 becomes elevated within aged humans and mice, while systemic Wnt remained undetectable in these species. Wnt also failed to inhibit satellite cell myogenicity, while TGF-β1 suppressed regenerative potential in a biphasic fashion. Intriguingly, young levels of TGF-β1 were inhibitory and young sera suppressed myogenesis if TGF-β1 was activated. Our data suggest that platelet-derived sera TGF-β1 levels, or endocrine TGF-β1 levels, do not explain the age-dependent inhibition of muscle regeneration by this cytokine. In vivo, TGF-β neutralizing antibody, or a soluble decoy, failed to reduce systemic TGF-β1 and rescue myogenesis in old mice. However, muscle regeneration was improved by the systemic delivery of a TGF-β receptor kinase inhibitor, which attenuated TGF-β signaling in skeletal muscle. Summarily, these findings argue against the endocrine path of a TGF-β1-dependent block on muscle regeneration, identify physiological modalities of age-imposed changes in TGF-β1, and introduce new therapeutic strategies for the broad restoration of aged organ repair.
Parkinson's disease is a neurodegenerative disorder characterized by the preferential loss of midbrain dopaminergic neurons in the substantia nigra (SN). One of the earliest detectable biochemical alterations that occurs in the Parkinsonian brain is a marked reduction in SN levels of total glutathione (glutathione plus glutathione disulfide), occurring before losses in mitochondrial complex I (CI) activity, striatal dopamine levels, or midbrain dopaminergic neurodegeneration associated with the disease. Previous in vitro data from our laboratory has suggested that prolonged depletion of dopaminergic glutathione results in selective impairment of mitochondrial complex I activity through a reversible thiol oxidation event. To address the effects of depletion in dopaminergic glutathione levels in vivo on the nigrostriatal system, we created genetically engineered transgenic mouse lines in which expression of ␥-glutamyl cysteine ligase, the rate-limiting enzyme in de novo glutathione synthesis, can be inducibly downregulated in catecholaminergic neurons, including those of the SN. A novel method for isolation of purified dopaminergic striatal synaptosomes was used to study the impact of dopaminergic glutathione depletion on mitochondrial events demonstrated previously to occur in vitro as a consequence of this alteration. Dopaminergic glutathione depletion was found to result in a selective reversible thiol-oxidation-dependent mitochondrial complex I inhibition, followed by an age-related nigrostriatal neurodegeneration. This suggests that depletion in glutathione within dopaminergic SN neurons has a direct impact on mitochondrial complex I activity via increased nitric oxide-related thiol oxidation and age-related dopaminergic SN cell loss.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.