This review aims to summarize the knowledge about the relationship between circadian rhythms and their influence on the development of type 2 diabetes mellitus (T2DM) and metabolic syndrome. Circadian rhythms are controlled by internal molecular feedback loops that synchronize the organism with the external environment. These loops are affected by genetic and epigenetic factors. Genetic factors include polymorphisms and mutations of circadian genes. The expression of circadian genes is regulated by epigenetic mechanisms that change from prenatal development to old age. Epigenetic modifications are influenced by the external environment. Most of these modifications are affected by our own life style. Irregular circadian rhythm and low quality of sleep have been shown to increase the risk of developing T2DM and other metabolic disorders. Here, we attempt to provide a wide description of mutual relationships between epigenetic regulation, circadian rhythm, aging process and highlight new evidences that show possible therapeutic advance in the field of chrono-medicine which will be more important in the upcoming years.
Glioblastoma multiforme (GBM) is a primary brain cancer of poor prognosis, with existing treatments remaining essentially palliative. Current GBM therapy fails due to rapid reappearance of the heterogeneous neoplasm, with models suggesting that the recurrent growth is from treatment-resistant glioblastoma stem-like cells (GSCs). Whether GSCs depend on survival/proliferative cues from their surrounding microenvironmental niche, particularly surrounding the leading edge after treatment remains unknown. Simulating human GBM in the laboratory relies on representative cell lines and xenograft models for translational medicine. Due to U87MG source discrepancy and differential proliferation responses to retinoic acid treatment, this study highlights the challenges faced by laboratory scientists working with this representative GBM cell line. Investigating the response to all trans-retinoic acid (ATRA) revealed its sequestering of the prominin-1 stem cell marker. ICAM-1 universally present throughout U87MG was enhanced by ATRA, of interest for chemotherapy targeting studies. ATRA triggered diverse expression patterns of long non-coding RNAs PARTICLE and GAS5 in the leading edge and established monolayer growth zone microenvironment. Karyotyping confirmed the female origin of U87MG sourced from Europe. Passaging U87MG revealed the presence of chromosomal anomalies reflective of structural genomic alterations in this glioblastoma cell line. All evidence considered, this study exposes further phenotypic nuances of U87MG which may belie researchers seeking data contributing towards the elusive cure for GBM.
The autoimmune condition, Celiac Disease (CeD), displays broad clinical symptoms due to gluten exposure. Its genetic association with DQ variants in the human leukocyte antigen (HLA) system has been recognised. Monocyte-derived mature dendritic cells (MoDCs) present gluten peptides through HLA-DQ and co-stimulatory molecules to T lymphocytes, eliciting a cytokine-rich microenvironment. Having access to CeD associated families prevalent in the Czech Republic, this study utilised an in vitro model to investigate their differential monocyte profile. The higher monocyte yields isolated from PBMCs of CeD patients versus control individuals also reflected the greater proportion of dendritic cells derived from these sources following lipopolysaccharide (LPS)/ peptic-tryptic-gliadin (PTG) fragment stimulation. Cell surface markers of CeD monocytes and MoDCs were subsequently profiled. This foremost study identified a novel bio-profile characterised by elevated CD64 and reduced CD33 levels, unique to CD14++ monocytes of CeD patients. Normalisation to LPS stimulation revealed the increased sensitivity of CeD-MoDCs to PTG, as shown by CD86 and HLA-DQ flow cytometric readouts. Enhanced CD86 and HLA-DQ expression in CeD-MoDCs were revealed by confocal microscopy. Analysis highlighted their dominance at the CeD-MoDC membrane in comparison to controls, reflective of superior antigen presentation ability. In conclusion, this investigative study deciphered the monocytes and MoDCs of CeD patients with the identification of a novel bio-profile marker of potential diagnostic value for clinical interpretation. Herein, the characterisation of CD86 and HLA-DQ as activators to stimulants, along with robust membrane assembly reflective of efficient antigen presentation, offers CeD targeted therapeutic avenues worth further exploration.
Celiac disease (CeD) manifests with autoimmune intestinal inflammation from gluten and genetic predisposition linked to human leukocyte antigen class-II (HLA-II) gene variants. Antigen-presenting cells facilitate gluten exposition through the interaction of their surface major histocompatibility complex (MHC) with the T cell receptor (TCR) on T lymphocytes. This fundamental mechanism of adaptive immunity has broadened upon recognition of extracellular exosomal MHC, raising awareness of an alternative means for antigen presentation. This study demonstrates that conditioned growth media (CGM) previously exposed to monocyte-derived dendritic cells from CeD significantly downregulates the CD3+ lineage marker of control T cells. Such increased activation was reflected in their elevated IL-2 secretion. Exosome localization motif identification and quantification within HLA-DQA1 and HLA-DQB1 transcripts highlighted their significant prevalence within HLA-DQB1 alleles associated with CeD susceptibility. Flow cytometry revealed the strong correlation between HLA-DQ and the CD63 exosomal marker in T cells exposed to CGM from MoDCs sourced from CeD patients. This resulted in lower concentrations of CD25+ CD127− T cells, suggestive of their compromised induction to T-regulatory cells associated with CeD homeostasis. This foremost comparative study deciphered the genomic basis and extracellular exosomal effects of HLA transfer on T lymphocytes in the context of CeD, offering greater insight into this auto-immune disease.
Adaptive immunity changes over an individual’s lifetime, maturing by adulthood and diminishing with old age. Epigenetic mechanisms involving DNA and histone methylation form the molecular basis of immunological memory during lymphocyte development. Monocytes alter their function to convey immune tolerance, yet the epigenetic influences at play remain to be fully understood in the context of lifespan. This study of a healthy genetically homogenous cohort of children, adults and seniors sought to decipher the epigenetic dynamics in B-lymphocytes and monocytes. Variable global cytosine methylation within retro-transposable LINE-1 repeats was noted in monocytes compared to B-lymphocytes across age groups. The expression of the human leukocyte antigen (HLA)-DQ alpha chain gene HLA-DQA1*01 revealed significantly reduced levels in monocytes in all ages relative to B-lymphocytes, as well as between lifespan groups. High melting point analysis and bisulfite sequencing of the HLA-DQA1*01 promoter in monocytes highlighted variable cytosine methylation in children and seniors but greater stability at this locus in adults. Further epigenetic evaluation revealed higher histone lysine 27 trimethylation in monocytes from this adult group. Chromatin immunoprecipitation and RNA pulldown demonstrated association with a novel lncRNA TINA with structurally conserved similarities to the previously recognized epigenetic modifier PARTICLE. Seeking to interpret the epigenetic immunological landscape across three representative age groups, this study focused on HLA-DQA1*01 to expose cytosine and histone methylation alterations and their association with the non-coding transcriptome. Such insights unveil previously unknown complex epigenetic layers, orchestrating the strength and weakening of adaptive immunity with the progression of life.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.