Absorbable collagen sponges (ACS) are used clinically as carriers of recombinant human bone morphogenetic protein 2 (rhBMP-2) to promote bone regeneration. ACS exhibit ectopic bone growth due to delivery of supraphysiological levels of rhBMP-2, which is particularly problematic in craniofacial bone injuries for both functional and esthetic reasons. We hypothesized that hydrogels from the reduced form of keratin proteins (kerateine) would serve as a suitable alternative to ACS carriers of rhBMP-2. The rationale for this hypothesis is that keratin biomaterials degrade slowly in vivo, have modifiable material properties, and have demonstrated capacity to deliver therapeutic agents. We investigated kerateine hydrogels and freeze-dried scaffolds as rhBMP-2 carriers in a critically-sized rat mandibular defect model. ACS, kerateine hydrogels, and kerateine scaffolds loaded with rhBMP-2 achieved bridging in animals by 8 weeks as indicated by micro-computed tomography. Kerateine scaffolds achieved statistically increased bone mineral density compared to ACS and kerateine hydrogels, with levels reaching those of native bone. Importantly, both kerateine hydrogels and kerateine scaffolds had significantly less ectopic bone growth than ACS sponges at both 8 and 16 weeks post-operatively. These studies demonstrate the suitability of keratins as rhBMP-2 carriers due to equal regenerative capacity with reduced ectopic growth compared to ACS.
The present study evaluates the potential of en-face optical coherence tomography (OCT) as a possible noninvasive high resolution method for supplying necessary information on the material defects of dental prostheses and microleakage at prosthetic interfaces. Teeth are also imaged after several treatment methods to asses material defects and microleakage at the tooth-filling interface, and the presence or absence of apical microleakage, as well as to evaluate the quality of bracket bonding on dental hard tissue. C-scan and B-scan OCT images as well as confocal images are acquired from a large range of samples. Gaps between the dental interfaces and material defects are clearly exposed.
We present and characterize a sequential angular compounding method for reducing speckle contrast in optical coherence tomography images of paint layers. The results are compared with postprocessing methods, and we show that the compounding technique can improve the speckle contrast ratio in B-scans by better than a factor of 2 in exchange for a negligible loss of resolution. As a result, image aesthetics are improved, thin layers become more distinct, and edge-detection algorithms work more efficiently. The effect of varying the angular scan size and number of averages is investigated, and it is found that a degree of statistical correlation between speckle patterns exists, even for relatively large changes in angle of incidence. Angular compounding is also performed on three-dimensional data sets and compared with a method whereby en face slices are averaged over depth.
There has been a long tradition of applying biomedical imaging techniques to the examination of historical artefacts, owing to similar demands for non-invasive methods in both fields. Optical Coherence Tomography (OCT) is no exception. We review the achievements on OCT applications to art conservation and archaeology since the publication of the first papers in 2004. Historical artefacts include a much broader range of materials than biological tissues, hence presenting a greater and somewhat different challenge to the field of OCT. New results will be presented to illustrate the various applications of OCT including both qualitative and quantitative analysis.
Coherent fiber bundles can be used to relay the image plane from the distal tip of an endomicroscope to an external confocal microscopy system. The frame rate is therefore determined by the speed of the microscope's laser scanning system which, at 10-20 Hz, may be undesirably low for in vivo clinical applications. Line-scanning allows an increase in the frame rate by an order of magnitude in exchange for some loss of optical sectioning, but the width of the detector slit cannot easily be adapted to suit different imaging conditions. The rolling shutter of a CMOS camera can be used as a virtual detector slit for a bench-top line-scanning confocal microscope, and here we extend this idea to endomicroscopy. By synchronizing the camera rolling shutter with a scanning laser line we achieve confocal imaging with an electronically variable detector slit. This architecture allows us to acquire every other frame with the detector slit offset by a known distance, and we show that subtracting this second image leads to improved optical sectioning.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.