We conducted a serological study to define correlates of immunity against SARS-CoV-2. Relative to mild COVID-19 cases, individuals with severe disease exhibited elevated virus-neutralizing titers and antibodies against nucleocapsid (N) and the receptor binding domain (RBD) of spike protein. Age and sex played lesser roles. All cases, including asymptomatic individuals, seroconverted by 2 weeks post-PCR confirmation. Spike RBD and S2 and neutralizing antibodies remained detectable through 5-7 months post-onset, whereas α-N titers diminished. Testing of 5882 members of the local community revealed only 1 sample with seroreactivity to both RBD and S2 that lacked neutralizing antibodies. This fidelity could not be achieved with either RBD or S2 alone. Thus, inclusion of multiple independent assays improved the accuracy of antibody tests in low seroprevalence communities and revealed differences in antibody kinetics depending on the antigen. We conclude that neutralizing antibodies are stably produced for at least 5-7 months after SARS-CoV-2 infection.
Rationale: CC16 (club cell secretory protein-16), a member of the secretoglobin family, is one of the most abundant proteins in normal airway secretions and has been described as a serum biomarker for obstructive lung diseases. Objectives: To determine whether low CC16 is a marker for airway pathology or is implicated in the pathophysiology of progressive airway damage in these conditions. Methods: Using human data from the birth cohort of the Tucson Children's Respiratory Study, we examined the relation of circulating CC16 levels with pulmonary function and responses to bronchial methacholine challenge from childhood up to age 32 years. In wild-type and CC16 2/2 mice, we set out to comprehensively examine pulmonary physiology, inflammation, and remodeling in the naive airway. Measurements and Main Results: We observed that Tucson Children's Respiratory Study participants in the lowest tertile of serum CC16 had significant deficits in their lung function and enhanced airway hyperresponsiveness to methacholine challenge from 11 years throughout young adult life. Similarly, CC16 2/2 mice had significant deficits in lung function and enhanced airway hyperresponsiveness to methacholine as compared with wild-type mice, which were independent of inflammation and mucin production. As compared with wild-type mice, CC16 2/2 mice had significantly elevated gene expression of procollagen type I, procollagen type III, and a-smooth muscle actin, areas of pronounced collagen deposition and significantly enhanced smooth muscle thickness. Conclusions: Our findings support clinical observations by providing evidence that lack of CC16 in the lung results in dramatically altered pulmonary function and structural alterations consistent with enhanced remodeling.
We conducted an extensive serological study to quantify population-level exposure and define correlates of immunity against SARS-CoV-2. We found that relative to mild COVID-19 cases, individuals with severe disease exhibited elevated authentic virus-neutralizing titers and antibody levels against nucleocapsid (N) and the receptor binding domain (RBD) and the S2 region of spike protein. Unlike disease severity, age and sex played lesser roles in serological responses. All cases, including asymptomatic individuals, seroconverted by 2 weeks post-PCR confirmation. RBD- and S2-specific and neutralizing antibody titers remained elevated and stable for at least 2-3 months post-onset, whereas those against N were more variable with rapid declines in many samples. Testing of 5882 self-recruited members of the local community demonstrated that 1.24% of individuals showed antibody reactivity to RBD. However, 18% (13/73) of these putative seropositive samples failed to neutralize authentic SARS-CoV-2 virus. Each of the neutralizing, but only 1 of the non-neutralizing samples, also displayed potent reactivity to S2. Thus, inclusion of multiple independent assays markedly improved the accuracy of antibody tests in low seroprevalence communities and revealed differences in antibody kinetics depending on the viral antigen. In contrast to other reports, we conclude that immunity is durable for at least several months after SARS-CoV-2 infection.
Studies have shown that club cell secretory protein (CC16) plays important protective roles in the lungs, yet its complete biological functions are unclear. We devised a translational mouse model in order to investigate the impact of early life infections, in the context of CC16 deficiency, on lung function in adult mice. CC16 sufficient (WT) and deficient (CC16 -/- ) mice were infected with Mycoplasma pneumoniae (Mp) as weanlings and assessed as adults ( e arly l ife i nfection m odel; ELIM) and compared to adult mice infected for only three days ( a dult i nfection m odel; AIM). CC16 -/- Mp-infected mice had significantly increased airway hyperresponsiveness (AHR) in both models compared to WT mice. However, CC16 -/- mice infected in early life (ELIM) displayed significantly increased AHR compared to CC16 -/- mice infected in adulthood (AIM). In stark contrast, lung function in ELIM WT mice returned to levels similar to saline-treated controls. While WT mice cleared Mp infection in the ELIM, CC16 -/- mice remained colonized with Mp throughout the model, which likely contributed to increased airway remodeling and persistence of Muc5ac expression. When CC16 -/- mouse tracheal epithelial cells (MTECs) were infected with Mp, increased Mp colonization and collagen gene expression were also detected compared to WT cells, suggesting that CC16 plays a protective role during Mp infection, in part through epithelial-driven host defense mechanisms.
BackgroundExperimental studies demonstrate beneficial immunological and hemodynamic effects of estradiol in animal models of sepsis. This raises the question whether estradiol contributes to sex differences in the incidence and outcomes of sepsis in humans. Yet, total estradiol levels are elevated in sepsis patients, particularly nonsurvivors. Bioavailable estradiol concentrations have not previously been reported in septic patients. The bioavailable estradiol concentration accounts for aberrations in estradiol carrier protein concentrations that could produce discrepancies between total and bioavailable estradiol levels. We hypothesized that bioavailable estradiol levels are low in septic patients and sepsis nonsurvivors.MethodsWe conducted a combined case-control and prospective cohort study. Venous blood samples were obtained from 131 critically ill septic patients in the medical and surgical intensive care units at the University of Rochester Medical Center and 51 control subjects without acute illness. Serum bioavailable estradiol concentrations were calculated using measurements of total estradiol, sex hormone-binding globulin, and albumin. Comparisons were made between patients with severe sepsis and control subjects and between hospital survivors and nonsurvivors. Multivariable logistic regression analysis was also performed.ResultsBioavailable estradiol concentrations were significantly higher in sepsis patients than in control subjects (211 [78–675] pM vs. 100 [78–142] pM, p < 0.01) and in sepsis nonsurvivors than in survivors (312 [164–918] pM vs. 167 [70–566] pM, p = 0.04). After adjustment for age and comorbidities, patients with bioavailable estradiol levels above the median value had significantly higher risk of hospital mortality (OR 4.27, 95 % CI 1.65–11.06, p = 0.003). Bioavailable estradiol levels were directly correlated with severity of illness and did not differ between men and women.ConclusionsContrary to our hypothesis, bioavailable estradiol levels were elevated in sepsis patients, particularly nonsurvivors, and were independently associated with mortality. Whether estradiol’s effects are harmful, beneficial, or neutral in septic patients remains unknown, but our findings raise caution about estradiol’s therapeutic potential in this setting. Our findings do not provide an explanation for sex-based differences in sepsis incidence and outcomes.Electronic supplementary materialThe online version of this article (doi:10.1186/s13054-016-1525-9) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.