Familial hemiplegic migraine type 1 (FHM1) is an autosomal dominant subtype of migraine with aura that is associated with hemiparesis. As with other types of migraine, it affects women more frequently than men. FHM1 is caused by mutations in the CACNA1A gene, which encodes the α 1A subunit of Ca v 2.1 channels; the R192Q mutation in CACNA1A causes a mild form of FHM1, whereas the S218L mutation causes a severe, often lethal phenotype. Spreading depression (SD), a slowly propagating neuronal and glial cell depolarization that leads to depression of neuronal activity, is the most likely cause of migraine aura. Here, we have shown that transgenic mice expressing R192Q or S218L FHM1 mutations have increased SD frequency and propagation speed; enhanced corticostriatal propagation; and, similar to the human FHM1 phenotype, more severe and prolonged post-SD neurological deficits. The susceptibility to SD and neurological deficits is affected by allele dosage and is higher in S218L than R192Q mutants. Further, female S218L and R192Q mutant mice were more susceptible to SD and neurological deficits than males. This sex difference was abrogated by ovariectomy and senescence and was partially restored by estrogen replacement, implicating ovarian hormones in the observed sex differences in humans with FHM1. These findings demonstrate that genetic and hormonal factors modulate susceptibility to SD and neurological deficits in FHM1 mutant mice, providing a potential mechanism for the phenotypic diversity of human migraine and aura.
Based on observed changes in the social context for the display of ultrasonic vocalizations, scent marking, aggression, and mounting behavior by male mice with a null mutation of the transient receptor potential 2 ion channel, it was proposed recently that a primary function of the mouse vomeronasal organ (VNO)/accessory olfactory system is sex discrimination. We tested this hypothesis directly by studying the ability of male mice to discriminate between urinary odors of conspecifics of the two sexes and in different endocrine states using habituation-dishabituation tests. Male mice from which the VNO had been surgically removed (VNOx) resembled sham-operated controls (VNOi) in their ability to discriminate between volatile urinary odors from estrous females versus gonadally intact males, as well as between urinary odors from estrous versus ovariectomized females and from gonadally intact versus castrated males. When physical access to stimuli was permitted, VNOi control males strongly preferred to investigate volatile and nonvolatile urinary odorants from estrous females as opposed to intact males, whereas VNOx males showed no such preference. Mating performance in tests with estrous females was equivalent in VNOi and VNOx subjects. Both groups of males preferred to mount an estrous female instead of a castrated male. Our results suggest that the VNO is not required for sex discrimination but instead detects the nonvolatile components of oppositesex urine that may be used to help prolong contact with individuals that produce these chemosignals.
In living cells, most proteins diffuse over distances of micrometres within seconds. Protein translocation is constrained due to the cellular organization into subcompartments that impose diffusion barriers and guide enzymatic activities to their targets. Here, we introduce an approach to retrieve structural features from the scale-dependent mobility of green fluorescent protein monomer and multimers in human cells. We measure protein transport simultaneously between hundreds of positions by multi-scale fluorescence cross-correlation spectroscopy using a line-illuminating confocal microscope. From these data we derive a quantitative model of the intracellular architecture that resembles a random obstacle network for diffusing proteins. This topology partitions the cellular content and increases the dwell time of proteins in their local environment. The accessibility of obstacle surfaces depends on protein size. Our method links multi-scale mobility measurements with a quantitative description of intracellular structure that can be applied to evaluate how drug-induced perturbations affect protein transport and interactions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.