A family of low-valent Ni, Co, and Fe naphthyridine-diimine (NDI) complexes is presented. Ligand-based π* orbitals are sufficiently low-lying to fall within the metal 3d manifold, resulting in electronic structures that are highly delocalized across the conjugated [NDI]M system. This feature confers stability to metal-metal interactions during two-electron redox reactions, as demonstrated in a prototypical oxidative addition of allyl chloride.
Dinickel naphthyridine−bis(oxazoline) catalysts promote enantioselective intermolecular [4 + 1]-cycloadditions of vinylidene equivalents and 1,3-dienes. The products of this reaction are methylenecyclopentenes, and the exocyclic alkene is generally obtained with high Z selectivity. E-and Z-dienes react in a stereoconvergent fashion, providing cycloadducts with the same sense of absolute stereochemistry and nearly identical ee values. This feature allows dienes that are commercially available as E/Z mixtures to be used as substrates for the cycloaddition. A DFT model for the origin of asymmetric induction is provided.S everal of the most universal ligands in asymmetric catalysis employ substituted oxazolines as the source of chirality. 1 Prominent examples include C 2 -symmetric bis(oxazoline) and
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.