Pseudomonas aeruginosa is a microorganism associated with the disease cystic fibrosis. While environmental P. aeruginosa strains are generally nonmucoid and motile, isolates recovered from the cystic fibrosis lung frequently display a mucoid, nonmotile phenotype. This phenotypic conversion is mediated by the alternative sigma factor AlgT. Previous work has shown that repression of fleQ by AlgT accounts for the loss of flagellum biosynthesis in these strains. Here, we elucidate the mechanism involved in the AlgT-mediated control of fleQ. Electrophoretic mobility shift assays using purified AlgT and extracts derived from isogenic AlgT ؉ and AlgT ؊ strains revealed that AlgT inhibits fleQ indirectly. We observed that the AlgT-dependent transcriptional regulator AmrZ interacts directly with the fleQ promoter. To determine whether AmrZ functions as a repressor of fleQ, we mutated amrZ in the mucoid, nonmotile P. aeruginosa strain FRD1. Unlike the parental strain, the amrZ mutant was nonmucoid and motile. Complementation of the mutant with amrZ restored the mucoid, nonmotile phenotype. Thus, our data show that AlgT inhibits flagellum biosynthesis in mucoid, nonmotile P. aeruginosa cystic fibrosis isolates by promoting expression of AmrZ, which subsequently represses fleQ. Since fleQ directly or indirectly controls the expression of almost all flagellar genes, its repression ultimately leads to the loss of flagellum biosynthesis.
An understanding of model systems of trastuzumab (Herceptin) resistance is of great importance since the humanized monoclonal antibody is now used as first line therapy with paclitaxel in patients with metastatic Her2 overexpressing breast cancer, and the majority of their tumors has innate resistance or develops acquired resistance to the treatment. Previously, we selected trastuzumab-resistant clonal cell lines in vitro from trastuzumab-sensitive parental BT-474 cells and showed that cloned trastuzumab-resistant cell lines maintain similar levels of the extracellular Her2 receptor, bind trastuzumab as efficiently as the parental cells, but continue to grow in the presence of trastuzumab and display cell cycle profiles and growth rates comparable to parental cells grown in the absence of trastuzumab (Kute et al. in Cytometry A 57:86-93, 2004). We now show that trastuzumab-resistant and trastuzumab-sensitive cells both surprisingly display trastuzumab-mediated growth inhibition in athymic nude mice. This demonstrates that resistance developed in vitro is not predictive of resistance in vivo. The observation that in vitro resistant cells are sensitive to trastuzumab in vivo could be explained by antibody dependent cellular cytotoxicity (ADCC). Therefore, both parental and trastuzumab-resistant cells were assayed for ADCC in real time on electroplates with and without trastuzumab in the presence of a natural killer cell line (NK-92), and granulocyte or mononuclear cellular fractions isolated from human peripheral blood. Mononuclear cells and NK-92 cells were more effective in killing both parental and trastuzumab-resistant cells in the presence of trastuzumab. Both trastuzumab-resistant cells and trastuzumab-sensitive cells showed similar susceptibility to ADCC despite displaying divergent growth responses to trastuzumab. The granulocyte fraction was able to kill these cells with equal efficacy in the presence or absence of trastuzumab. These results support a model of trastuzumab tumor cell killing in vivo mediated primarily by ADCC from the mononuclear fraction of innate immune cells and suggest that in the clinical setting not only should changes in signaling transduction pathways be studied in acquired tumor resistance to trastuzumab, but also mechanisms by which tumors impede immune function should be evaluated.
BackgroundSpontaneous regression/complete resistance (SR/CR) mice are a unique colony of mice that possess an inheritable, natural cancer resistance mediated primarily by innate cellular immunity. This resistance is effective against sarcoma 180 (S180) at exceptionally high doses and these mice remain healthy.MethodsIn this study, we challenged SR/CR mice with additional lethal transplantable mouse cancer cell lines to determine their resistance spectrum. The ability of these transplantable cancer cell lines to induce leukocyte infiltration was quantified and the percentage of different populations of responding immune cells was determined using flow cytometry.ResultsIn comparison to wild type (WT) mice, SR/CR mice showed significantly higher resistance to all cancer cell lines tested. However, SR/CR mice were more sensitive to MethA sarcoma (MethA), B16 melanoma (B16), LL/2 lung carcinoma (LL/2) and J774 lymphoma (J774) than to sarcoma 180 (S180) and EL-4 lymphoma (EL-4). Further mechanistic studies revealed that this lower resistance to MethA and LL/2 was due to the inability of these cancer cells to attract SR/CR leukocytes, leading to tumor cell escape from resistance mechanism. This escape mechanism was overcome by co-injection with S180, which could attract SR/CR leukocytes allowing the mice to resist higher doses of MethA and LL/2. S180-induced cell-free ascites fluid (CFAF) co-injection recapitulated the results obtained with live S180 cells, suggesting that this chemoattraction by cancer cells is mediated by diffusible molecules. We also tested for the first time whether SR/CR mice were able to resist additional cancer cell lines prior to S180 exposure. We found that SR/CR mice had an innate resistance against EL-4 and J774.ConclusionsOur results suggest that the cancer resistance in SR/CR mice is based on at least two separate processes: leukocyte migration/infiltration to the site of cancer cells and recognition of common surface properties on cancer cells. The infiltration of SR/CR leukocytes was based on both the innate ability of leukocytes to respond to chemotactic signals produced by cancer cells and on whether cancer cells produced these chemotactic signals. We found that some cancer cells could escape from SR/CR resistance because they did not induce infiltration of SR/CR leukocytes. However, if infiltration of leukocytes was induced by co-injection with chemotactic factors, these same cancer cells could be effectively recognized and killed by SR/CR leukocytes.
BackgroundIn this study, we pilot tested an in vitro assay of cancer killing activity (CKA) in circulating leukocytes of 22 cancer cases and 25 healthy controls.MethodsUsing a human cervical cancer cell line, HeLa, as target cells, we compared the CKA in circulating leukocytes, as effector cells, of cancer cases and controls. The CKA was normalized as percentages of total target cells during selected periods of incubation time and at selected effector/target cell ratios in comparison to no-effector-cell controls.ResultsOur results showed that CKA similar to that of our previous study of SR/CR mice was present in human circulating leukocytes but at profoundly different levels in individuals. Overall, males have a significantly higher CKA than females. The CKA levels in cancer cases were lower than that in healthy controls (mean ± SD: 36.97 ± 21.39 vs. 46.28 ± 27.22). Below-median CKA was significantly associated with case status (odds ratio = 4.36; 95% Confidence Interval = 1.06, 17.88) after adjustment of gender and race.ConclusionsIn freshly isolated human leukocytes, we were able to detect an apparent CKA in a similar manner to that of cancer-resistant SR/CR mice. The finding of CKA at lower levels in cancer patients suggests the possibility that it may be of a consequence of genetic, physiological, or pathological conditions, pending future studies with larger sample size.
BackgroundSpontaneous Regression/Complete Resistant (SR/CR) mice are resistant to cancer through a mechanism that is mediated entirely by leukocytes of innate immunity. Transfer of leukocytes from SR/CR mice can confer cancer resistance in wild-type (WT) recipients in both preventative and therapeutic settings. In the current studies, we investigated factors that may impact the efficacy and functionality of SR/CR donor leukocytes in recipients.ResultsIn sex-mismatched transfers, functionality of female donor leukocytes was not affected in male recipients. In contrast, male donor leukocytes were greatly affected in the female recipients. In MHC-mismatches, recipients of different MHC backgrounds, or mice of different strains, showed a greater negative impact on donor leukocytes than sex-mismatches. The negative effects of sex-mismatch and MHC-mismatch on donor leukocytes were additive. Old donor leukocytes performed worse than young donor leukocytes in all settings including in young recipients. Young recipients were not able to revive the declining function of old donor leukocytes. However, the function of young donor leukocytes declined gradually in old recipients, suggesting that an aged environment may contain factors that are deleterious to cellular functions. The irradiation of donor leukocytes prior to transfers had a profound suppressive effect on donor leukocyte functions, possibly as a result of impaired transcription. The cryopreserving of donor leukocytes in liquid nitrogen had no apparent effect on donor leukocyte functions, except for a small loss of cell number after revival from freezing.ConclusionDespite the functional suppression of donor leukocytes in sex- and MHC-mismatched recipients, as well as old recipients, there was a therapeutic time period during the initial few weeks during which donor leukocytes were functional before their eventual rejection or functional decline. The eventual rejection of donor leukocytes will likely prevent donor leukocyte engraftment which would help minimize the risk of transfusion-associated graft-versus-host disease. Therefore, using leukocytes from healthy donors with high anti-cancer activity may be a feasible therapeutic concept for treating malignant diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.