Background Since the novel coronavirus emerged in late 2019, the scientific and public health community around the world have sought to better understand, surveil, treat, and prevent the disease, COVID-19. In sub-Saharan Africa (SSA), many countries responded aggressively and decisively with lockdown measures and border closures. Such actions may have helped prevent large outbreaks throughout much of the region, though there is substantial variation in caseloads and mortality between nations. Additionally, the health system infrastructure remains a concern throughout much of SSA, and the lockdown measures threaten to increase poverty and food insecurity for the subcontinent’s poorest residents. The lack of sufficient testing, asymptomatic infections, and poor reporting practices in many countries limit our understanding of the virus’s impact, creating a need for better and more accurate surveillance metrics that account for underreporting and data contamination. Objective The goal of this study is to improve infectious disease surveillance by complementing standardized metrics with new and decomposable surveillance metrics of COVID-19 that overcome data limitations and contamination inherent in public health surveillance systems. In addition to prevalence of observed daily and cumulative testing, testing positivity rates, morbidity, and mortality, we derived COVID-19 transmission in terms of speed, acceleration or deceleration, change in acceleration or deceleration (jerk), and 7-day transmission rate persistence, which explains where and how rapidly COVID-19 is transmitting and quantifies shifts in the rate of acceleration or deceleration to inform policies to mitigate and prevent COVID-19 and food insecurity in SSA. Methods We extracted 60 days of COVID-19 data from public health registries and employed an empirical difference equation to measure daily case numbers in 47 sub-Saharan countries as a function of the prior number of cases, the level of testing, and weekly shift variables based on a dynamic panel model that was estimated using the generalized method of moments approach by implementing the Arellano-Bond estimator in R. Results Kenya, Ghana, Nigeria, Ethiopia, and South Africa have the most observed cases of COVID-19, and the Seychelles, Eritrea, Mauritius, Comoros, and Burundi have the fewest. In contrast, the speed, acceleration, jerk, and 7-day persistence indicate rates of COVID-19 transmissions differ from observed cases. In September 2020, Cape Verde, Namibia, Eswatini, and South Africa had the highest speed of COVID-19 transmissions at 13.1, 7.1, 3.6, and 3 infections per 100,0000, respectively; Zimbabwe had an acceleration rate of transmission, while Zambia had the largest rate of deceleration this week compared to last week, referred to as a jerk. Finally, the 7-day persistence rate indicates the number of cases on September 15, 2020, which are a function of new infections from September 8, 2020, decreased in South Africa from 216.7 to 173.2 and Ethiopia from 136.7 to 106.3 per 100,000. The statistical approach was validated based on the regression results; they determined recent changes in the pattern of infection, and during the weeks of September 1-8 and September 9-15, there were substantial country differences in the evolution of the SSA pandemic. This change represents a decrease in the transmission model R value for that week and is consistent with a de-escalation in the pandemic for the sub-Saharan African continent in general. Conclusions Standard surveillance metrics such as daily observed new COVID-19 cases or deaths are necessary but insufficient to mitigate and prevent COVID-19 transmission. Public health leaders also need to know where COVID-19 transmission rates are accelerating or decelerating, whether those rates increase or decrease over short time frames because the pandemic can quickly escalate, and how many cases today are a function of new infections 7 days ago. Even though SSA is home to some of the poorest countries in the world, development and population size are not necessarily predictive of COVID-19 transmission, meaning higher income countries like the United States can learn from African countries on how best to implement mitigation and prevention efforts. International Registered Report Identifier (IRRID) RR2-10.2196/21955
Background The emergence of SARS-CoV-2, the virus that causes COVID-19, has led to a global pandemic. The United States has been severely affected, accounting for the most COVID-19 cases and deaths worldwide. Without a coordinated national public health plan informed by surveillance with actionable metrics, the United States has been ineffective at preventing and mitigating the escalating COVID-19 pandemic. Existing surveillance has incomplete ascertainment and is limited by the use of standard surveillance metrics. Although many COVID-19 data sources track infection rates, informing prevention requires capturing the relevant dynamics of the pandemic. Objective The aim of this study is to develop dynamic metrics for public health surveillance that can inform worldwide COVID-19 prevention efforts. Advanced surveillance techniques are essential to inform public health decision making and to identify where and when corrective action is required to prevent outbreaks. Methods Using a longitudinal trend analysis study design, we extracted COVID-19 data from global public health registries. We used an empirical difference equation to measure daily case numbers for our use case in 50 US states and the District of Colombia as a function of the prior number of cases, the level of testing, and weekly shift variables based on a dynamic panel model that was estimated using the generalized method of moments approach by implementing the Arellano-Bond estimator in R. Results Examination of the United States and state data demonstrated that most US states are experiencing outbreaks as measured by these new metrics of speed, acceleration, jerk, and persistence. Larger US states have high COVID-19 caseloads as a function of population size, density, and deficits in adherence to public health guidelines early in the epidemic, and other states have alarming rates of speed, acceleration, jerk, and 7-day persistence in novel infections. North and South Dakota have had the highest rates of COVID-19 transmission combined with positive acceleration, jerk, and 7-day persistence. Wisconsin and Illinois also have alarming indicators and already lead the nation in daily new COVID-19 infections. As the United States enters its third wave of COVID-19, all 50 states and the District of Colombia have positive rates of speed between 7.58 (Hawaii) and 175.01 (North Dakota), and persistence, ranging from 4.44 (Vermont) to 195.35 (North Dakota) new infections per 100,000 people. Conclusions Standard surveillance techniques such as daily and cumulative infections and deaths are helpful but only provide a static view of what has already occurred in the pandemic and are less helpful in prevention. Public health policy that is informed by dynamic surveillance can shift the country from reacting to COVID-19 transmissions to being proactive and taking corrective action when indicators of speed, acceleration, jerk, and persist...
Background The COVID-19 pandemic has severely impacted Europe, resulting in a high caseload and deaths that varied by country. The second wave of the COVID-19 pandemic has breached the borders of Europe. Public health surveillance is necessary to inform policy and guide leaders. Objective This study aimed to provide advanced surveillance metrics for COVID-19 transmission that account for weekly shifts in the pandemic, speed, acceleration, jerk, and persistence, to better understand countries at risk for explosive growth and those that are managing the pandemic effectively. Methods We performed a longitudinal trend analysis and extracted 62 days of COVID-19 data from public health registries. We used an empirical difference equation to measure the daily number of cases in Europe as a function of the prior number of cases, the level of testing, and weekly shift variables based on a dynamic panel model that was estimated using the generalized method of moments approach by implementing the Arellano-Bond estimator in R. Results New COVID-19 cases slightly decreased from 158,741 (week 1, January 4-10, 2021) to 152,064 (week 2, January 11-17, 2021), and cumulative cases increased from 22,507,271 (week 1) to 23,890,761 (week 2), with a weekly increase of 1,383,490 between January 10 and January 17. France, Germany, Italy, Spain, and the United Kingdom had the largest 7-day moving averages for new cases during week 1. During week 2, the 7-day moving average for France and Spain increased. From week 1 to week 2, the speed decreased (37.72 to 33.02 per 100,000), acceleration decreased (0.39 to –0.16 per 100,000), and jerk increased (–1.30 to 1.37 per 100,000). Conclusions The United Kingdom, Spain, and Portugal, in particular, are at risk for a rapid expansion in COVID-19 transmission. An examination of the European region suggests that there was a decrease in the COVID-19 caseload between January 4 and January 17, 2021. Unfortunately, the rates of jerk, which were negative for Europe at the beginning of the month, reversed course and became positive, despite decreases in speed and acceleration. Finally, the 7-day persistence rate was higher during week 2 than during week 1. These measures indicate that the second wave of the pandemic may be subsiding, but some countries remain at risk for new outbreaks and increased transmission in the absence of rapid policy responses.
Background The COVID-19 pandemic has had a profound global impact on governments, health care systems, economies, and populations around the world. Within the East Asia and Pacific region, some countries have mitigated the spread of the novel coronavirus effectively and largely avoided severe negative consequences, while others still struggle with containment. As the second wave reaches East Asia and the Pacific, it becomes more evident that additional SARS-CoV-2 surveillance is needed to track recent shifts, rates of increase, and persistence associated with the pandemic. Objective The goal of this study is to provide advanced surveillance metrics for COVID-19 transmission that account for speed, acceleration, jerk, persistence, and weekly shifts, to better understand country risk for explosive growth and those countries who are managing the pandemic successfully. Existing surveillance coupled with our dynamic metrics of transmission will inform health policy to control the COVID-19 pandemic until an effective vaccine is developed. We provide novel indicators to measure disease transmission. Methods Using a longitudinal trend analysis study design, we extracted 330 days of COVID-19 data from public health registries. We used an empirical difference equation to measure the daily number of cases in East Asia and the Pacific as a function of the prior number of cases, the level of testing, and weekly shift variables based on a dynamic panel model that was estimated using the generalized method of moments approach by implementing the Arellano-Bond estimator in R. Results The standard surveillance metrics for Indonesia, the Philippines, and Myanmar were concerning as they had the largest new caseloads at 4301, 2588, and 1387, respectively. When looking at the acceleration of new COVID-19 infections, we found that French Polynesia, Malaysia, and the Philippines had rates at 3.17, 0.22, and 0.06 per 100,000. These three countries also ranked highest in terms of jerk at 15.45, 0.10, and 0.04, respectively. Conclusions Two of the most populous countries in East Asia and the Pacific, Indonesia and the Philippines, have alarming surveillance metrics. These two countries rank highest in new infections in the region. The highest rates of speed, acceleration, and positive upwards jerk belong to French Polynesia, Malaysia, and the Philippines, and may result in explosive growth. While all countries in East Asia and the Pacific need to be cautious about reopening their countries since outbreaks are likely to occur in the second wave of COVID-19, the country of greatest concern is the Philippines. Based on standard and enhanced surveillance, the Philippines has not gained control of the COVID-19 epidemic, which is particularly troubling because the country ranks 4th in population in the region. Without extreme and rigid social distancing, quarantines, hygiene, and masking to reverse trends, the Philippines will remain on the global top 5 list of worst COVID-19 outbreaks resulting in high morbidity and mortality. The second wave will only exacerbate existing conditions and increase COVID-19 transmissions.
Background The COVID-19 pandemic has disrupted the lives of millions and forced countries to devise public health policies to reduce the pace of transmission. In the Middle East and North Africa (MENA), falling oil prices, disparities in wealth and public health infrastructure, and large refugee populations have significantly increased the disease burden of COVID-19. In light of these exacerbating factors, public health surveillance is particularly necessary to help leaders understand and implement effective disease control policies to reduce SARS-CoV-2 persistence and transmission. Objective The goal of this study is to provide advanced surveillance metrics, in combination with traditional surveillance, for COVID-19 transmission that account for weekly shifts in the pandemic speed, acceleration, jerk, and persistence to better understand a country’s risk for explosive growth and to better inform those who are managing the pandemic. Existing surveillance coupled with our dynamic metrics of transmission will inform health policy to control the COVID-19 pandemic until an effective vaccine is developed. Methods Using a longitudinal trend analysis study design, we extracted 30 days of COVID-19 data from public health registries. We used an empirical difference equation to measure the daily number of cases in MENA as a function of the prior number of cases, the level of testing, and weekly shift variables based on a dynamic panel data model that was estimated using the generalized method of moments approach by implementing the Arellano-Bond estimator in R. Results The regression Wald statistic was significant (χ25=859.5, P<.001). The Sargan test was not significant, failing to reject the validity of overidentifying restrictions (χ2294=16, P=.99). Countries with the highest cumulative caseload of the novel coronavirus include Iran, Iraq, Saudi Arabia, and Israel with 530,380, 426,634, 342,202, and 303,109 cases, respectively. Many of the smaller countries in MENA have higher infection rates than those countries with the highest caseloads. Oman has 33.3 new infections per 100,000 population while Bahrain has 12.1, Libya has 14, and Lebanon has 14.6 per 100,000 people. In order of largest to smallest number of cumulative deaths since January 2020, Iran, Iraq, Egypt, and Saudi Arabia have 30,375, 10,254, 6120, and 5185, respectively. Israel, Bahrain, Lebanon, and Oman had the highest rates of COVID-19 persistence, which is the number of new infections statistically related to new infections in the prior week. Bahrain had positive speed, acceleration, and jerk, signaling the potential for explosive growth. Conclusions Static and dynamic public health surveillance metrics provide a more complete picture of pandemic progression across countries in MENA. Static measures capture data at a given point in time such as infection rates and death rates. By including speed, acceleration, jerk, and 7-day persistence, public health officials may design policies with an eye to the future. Iran, Iraq, Saudi Arabia, and Israel all demonstrated the highest rate of infections, acceleration, jerk, and 7-day persistence, prompting public health leaders to increase prevention efforts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.