The light/dark cycle and suprachiasmatic nucleus rhythmicity are known to have important influences on reproductive function of rodents. We studied reproductive function in female heterozygous and homozygous brain and muscle ARNT-like protein 1 (Bmal1, also known as Arntl ) null mice, which lack central and peripheral cellular rhythms. Heterozygous Bmal1 mice developed normally and were fertile, with apparent normal pregnancy progression and litter size, although postnatal mortality up to weaning was high (1.1-1.3/litter). The genotype distribution was skewed with both heterozygous and null genotypes underrepresented (1.0:1.7:0.7; P!0.05), suggesting loss of a single Bmal1 allele may impact on postnatal survival. Homozygous Bmal1 null mice were 30% lighter at weaning, and while they grew at a similar rate to the wild-type mice, they never achieved a comparable body weight. They had delayed vaginal opening (4 days), disrupted estrus cyclicity, and reduced ovarian weight (30%). Bmal1 null mice had a 40% reduction in ductal length and a 43% reduction in ductal branches in the mammary gland. Surprisingly, the Bmal1 mice ovulated, but progesterone synthesis was reduced in conjunction with altered corpora lutea formation. Pregnancy failed prior to implantation presumably due to poor embryo development. While Bmal1 null ovaries responded to pregnant mare serum gonadotropin/human chorionic gonadotropin stimulation, ovulation rate was reduced, and the fertilized oocytes progressed poorly to blastocysts and failed to implant. The loss of Bmal1 gene expression resulted in a loss of rhythmicity of many genes in the ovary and downregulation of Star. In conclusion, it is clear that the profound infertility of Bmal1 null mice is multifactorial.
The role of peripheral vs. central circadian rhythms and Clock in the maintenance of metabolic homeostasis and with aging was examined by using Clock(Delta19)+MEL mice. These have preserved suprachiasmatic nucleus and pineal gland rhythmicity but arrhythmic Clock gene expression in the liver and skeletal muscle. Clock(Delta19)+MEL mice showed fasting hypoglycemia in young-adult males, fasting hyperglycemia in older females, and substantially impaired glucose tolerance overall. Clock(Delta19)+MEL mice had substantially reduced plasma insulin and plasma insulin/glucose nocturnally in males and during a glucose tolerance test in females, suggesting impaired insulin secretion. Clock(Delta19)+MEL mice had reduced hepatic expression and loss of rhythmicity of gck, pfkfb3, and pepck mRNA, which is likely to impair glycolysis and gluconeogenesis. Clock(Delta19)+MEL mice also had reduced glut4 mRNA in skeletal muscle, and this may contribute to poor glucose tolerance. Whole body insulin tolerance was enhanced in Clock(Delta19)+MEL mice, however, suggesting enhanced insulin sensitivity. These responses occurred although the Clock(Delta19) mutation did not cause obesity and reduced plasma free fatty acids while increasing plasma adiponectin. These studies on clock-gene disruption in peripheral tissues and metabolic homeostasis provide compelling evidence of a relationship between circadian rhythms and the glucose/insulin and adipoinsular axes. It is, however, premature to declare that clock-gene disruption causes the full metabolic syndrome.
There is a growing recognition that the circadian timing system, in particular recently discovered clock genes, plays a major role in a wide range of physiological systems. Microarray studies, for example, have shown that the expression of hundreds of genes changes many fold in the suprachiasmatic nucleus, liver heart and kidney. In this review, we discuss the role of circadian rhythmicity in the control of reproductive function in animals and humans. Circadian rhythms and clock genes appear to be involved in optimal reproductive performance, but there are sufficient redundancies in their function that many of the knockout mice produced do not show overt reproductive failure. Furthermore, important strain differences have emerged from the studies especially between the various Clock (Circadian Locomotor Output Cycle Kaput) mutant strains. Nevertheless, there is emerging evidence that the primary clock genes, Clock and Bmal1 (Brain and Muscle ARNT-like protein 1, also known as Mop3), strongly influence reproductive competency. The extent to which the circadian timing system affects human reproductive performance is not known, in part, because many of the appropriate studies have not been done. With the role of Clock and Bmal1 in fertility becoming clearer, it may be time to pursue the effect of polymorphisms in these genes in relation to the various types of infertility in humans.
Disrupting maternal circadian rhythms through exposure to chronic phase shifts of the photoperiod has lifelong consequences for the metabolic homeostasis of the fetus, such that offspring develop increased adiposity, hyperinsulinaemia and poor glucose and insulin tolerance. In an attempt to determine the mechanisms by which these poor metabolic outcomes arise, we investigated the impact of chronic phase shifts (CPS) on maternal and fetal hormonal, metabolic and circadian rhythms. We assessed weight gain and food consumption of dams exposed to either CPS or control lighting conditions throughout gestation. At day 20, dams were assessed for plasma hormone and metabolite concentrations and glucose and insulin tolerance. Additionally, the expression of a range of circadian and metabolic genes was assessed in maternal, placental and fetal tissue. Control and CPS dams consumed the same amount of food, yet CPS dams gained 70% less weight during the first week of gestation. At day 20, CPS dams had reduced retroperitoneal fat pad weight (−15%), and time-of-day dependent decreases in liver weight, whereas fetal and placental weight was not affected. Melatonin secretion was not altered, yet the timing of corticosterone, leptin, glucose, insulin, free fatty acids, triglycerides and cholesterol concentrations were profoundly disrupted. The expression of gluconeogenic and circadian clock genes in maternal and fetal liver became either arrhythmic or were in antiphase to the controls. These results demonstrate that disruptions of the photoperiod can severely disrupt normal circadian profiles of plasma hormones and metabolites, as well as gene expression in maternal and fetal tissues. Disruptions in the timing of food consumption and the downstream metabolic processes required to utilise that food, may lead to reduced efficiency of growth such that maternal weight gain is reduced during early embryonic development. It is these perturbations that may contribute to the programming of poor metabolic homeostasis in the offspring.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.