Ubiquitous surface protein A molecules (UspAs) of Moraxella catarrhalis are large, nonfimbrial, autotransporter proteins that can be visualized as a "fuzzy" layer on the bacterial surface by transmission electron microscopy. Previous studies attributed a wide array of functions and binding activities to the closely related UspA1, UspA2, and/or UspA2H protein, yet the molecular and phylogenetic relationships among these activities remain largely unexplored. To address this issue, we determined the nucleotide sequence of the uspA1 genes from a variety of independent M. catarrhalis isolates and compared the deduced amino acid sequences to those of the previously characterized UspA1, UspA2, and UspA2H proteins. Rather than being conserved proteins, we observed a striking divergence of individual UspA1, UspA2, and UspA2H proteins resulting from the modular assortment of unrelated "cassettes" of peptide sequence. The exchange of certain variant cassettes correlates with strain-specific differences in UspA protein function and confers differing phenotypes upon these mucosal surface pathogens.
The Moraxella catarrhalis ubiquitous surface proteins (UspAs) are autotransporter molecules reported to interact with a variety of different host proteins and to affect processes ranging from serum resistance to cellular adhesion. The role of UspA1 as an adhesin has been confirmed with a number of different human cell types and is mediated by binding to eukaryotic proteins including carcinoembryonic antigenrelated cellular adhesion molecules (CEACAMs), fibronectin, and laminin. A distinct difference in the ability of prototypical M. catarrhalis strains to adhere to CEACAM-expressing cell lines prompted us to perform strain-specific structure-function analyses of UspA1 proteins. In this study, we characterized CEACAM binding by a diverse set of UspA1 proteins and showed that 3 out of 10 UspA1 proteins were incapable of binding CEACAM. This difference resulted from the absence of a distinct CEACAM binding motif in nonadhering strains. Our sequence analysis also revealed a single M. catarrhalis isolate that lacked the fibronectin-binding motif and was defective in adherence to Chang conjunctival epithelial cells. These results clearly demonstrate that UspA1-associated adhesive functions are not universally conserved. Instead, UspA1 proteins must be considered as variants with the potential to confer both different cell tropisms and host cell responses.
A new resource for sun strength data in Southern Africa has been established with the commissioning of a regional network of solar monitoring stations. The Southern African Universities Radiometric Network (SAURAN) is an initiative of Stellenbosch University and the University of KwaZulu-Natal (UKZN), and consists of an initial set of ten ground stations equipped with secondary standard thermopile radiometers. SAURAN’s aim is to provide a long-term record of sun strength in a region that shows excellent potential for the deployment of solar energy technologies. Instruments measuring direct normal irradiance (DNI), diffuse horizontal irradiance (DHI) and global horizontal irradiance (GHI) feed time-averaged data over 1-minute, hourly and daily intervals to a central archive from where they are accessible to the public via a website interface. Meteorological data is also provided by most of the stations. This paper gives a brief background to the SAURAN project and describes the network’s operation, coverage and future expansion. Examples of solar energy irradiance plots are also provided to illustrate the information available from the SAURAN database.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.