The integration of human papillomavirus (HPV) DNA into the human genome has been generally accepted as a characteristic of malignant lesions. To gain a better understanding of this phenomenon, genomic DNA from 181 cervical biopsy specimens was isolated and analyzed for HPV type and physical state of the HPV genome. These specimens represented the full spectrum of cervical disease, from condyloma to invasive carcinoma. Discrimination between integrated and episomal HPV DNA was accomplished by the detection of HPV-human DNA junction fragments on Southern blots. In most cases in which ambiguous Southern blot results were obtained, the specimens were reanalyzed by two-dimensional gel electrophoresis. Of the 100 biopsy specimens of cervical intraepithelial neoplasia analyzed, only 3 showed integrated HPV DNA, in contrast to 56 (81%) of 69 cervical carcinomas (P < 0.001) showing integrated HPV DNA. Of the 40 carcinomas containing HPV 16 DNA, 29 (72%) had integrated HPV DNA, of which 8 (20%) also had episomal HPV DNA. In 11 (27%) cancers, only episomal HPV 16 DNA was detected. All 23 HPV 18-containing carcinomas had integrated HPV DNA, and 1 also had episomal HPV 18 DNA. The difference between HPV types 16 and 18 with respect to frequency of integration was statistically significant (P < 0.01). The results of this study indicate that detectable integration of HPV DNA, regardless of type, occurs infrequently in cervical intraepithelial neoplasia. The absence of HPV 16 DNA integration in some carcinomas implies that integration is not always required for malignant progression. In contrast, the consistent integration of HPV 18 DNA in all cervical cancers examined may be related to its greater transforming efficiency in vitro and its reported clinical association with more aggressive cervical cancers.
We experimentally investigate the role of size effects and boundary scattering on the thermal conductivity of silicon-germanium alloys. The thermal conductivities of a series of epitaxially grown Si(1-x)Ge(x) thin films with varying thicknesses and compositions were measured with time-domain thermoreflectance. The resulting conductivities are found to be 3 to 5 times less than bulk values and vary strongly with film thickness. By examining these measured thermal conductivities in the context of a previously established model, it is shown that long wavelength phonons, known to be the dominant heat carriers in alloy films, are strongly scattered by the film boundaries, thereby inducing the observed reductions in heat transport. These results are then generalized to silicon-germanium systems of various thicknesses and compositions; we find that the thermal conductivities of Si(1-x)Ge(x) superlattices are ultimately limited by finite size effects and sample size rather than periodicity or alloying. This demonstrates the strong influence of sample size in alloyed nanosystems. Therefore, if a comparison is to be made between the thermal conductivities of superlattices and alloys, the total sample thicknesses of each must be considered.
Summary. The psychosexual sequelae of diagnosis and treatment of pre‐invasive cervical atypia were assessed in three groups of women. The first group included 30 women referred to a colposcopy clinic with an abnormal cervical smear indicating cervical intraepithelial neoplasia (CIN), the second comprised 50 women who were traced as sexual partners of men with penile human papillomavirus (HPV) infection; 26 of them had histologically proven cervical atypia and 24 had no such evidence. The third group included 25 women traced as partners of men with non‐specific urethritis and who did not have cervical disease. Before and after questionnaires assessed six aspects of sexual behaviour and responses before diagnosis and 6 months after treatment in women with cervical atypia. These were compared with answers given by women investigated and treated, if necessary, as partners of men with sexually transmitted disease (control group). There were statistically significant adverse psychosexual sequelae associated with diagnosis and treatment of pre‐invasive cervical epithelial disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.