The subgranular zone of the hippocampal formation gives rise to new neurons that populate the dentate gyrus throughout life. Cells in the hippocampus exhibit rhythmic clock gene expression and the circadian clock is known to regulate the cycle of cell division in other areas of the body. These facts suggest that the circadian clock may regulate adult neurogenesis in the hippocampus as well. In the present study, neurogenesis in the hippocampal subgranular zone was examined in arrhythmic Bmal1 knockout (-KO) mice and their rhythmic heterozygous and wildtype littermates. Proliferation and survival of newly generated subgranular zone cells were examined using bromodeoxyuridine labelling, while pyknosis (a measure of cell death) and hippocampal volume were examined in cresyl violet stained sections. There was no significant difference in cellular proliferation between any of the groups, yet survival of proliferating cells, 6 weeks after the bromodeoxyuridine injection, was significantly greater in the BMAL1-KO animals. The number of pyknotic cells was significantly decreased in Bmal1-KO animals, yet hippocampal volume remained the same across genotypes. These findings suggest that while a functional circadian clock is not necessary for normal proliferation of neuronal precursor cells, the normal pruning of newly generated neurons in the hippocampus may require a functional circadian clock.
Zinc is highly concentrated in synaptic vesicles throughout the mammalian telencephalon and, in particular, the hippocampal dentate gyrus. A role for zinc in modulating synaptic plasticity has been inferred, but whether zinc has a particular role in experience-dependent plasticity has yet to be determined. The aim of the current study was to determine whether vesicular zinc is important for modulating adult hippocampal neurogenesis in an experience-dependent manner and, consequently, hippocampal-dependent behaviour. We assessed the role of vesicular zinc in modulating hippocampal neurogenesis and behaviour by comparing ZnT3 knockout (KO) mice, which lack vesicular zinc, to wild-type (WT) littermates exposed to either standard housing conditions (SH) or an enriched environment (EE). We found that vesicular zinc is necessary for a cascade of changes in hippocampal plasticity following EE, such as increases in hippocampal neurogenesis and elevations in mature brain-derived neurotrophic factor (mBDNF), but was otherwise dispensable under SH conditions. Using the Spatial Object Recognition task and the Morris Water task we show that, unlike WT mice, ZnT3 KO mice showed no improvements in spatial memory following EE. These experiments demonstrate that vesicular zinc is essential for the enhancement of adult hippocampal neurogenesis and behaviour following enrichment, supporting a role for zincergic neurons in contributing to experience-dependent plasticity in the hippocampus.
In the adult mammalian brain, up-regulation of serotonin via the selective serotonin reuptake inhibitor fluoxetine increases hippocampal neurogenesis. However, research assessing the long-term effects of modulating serotonin during the developmental period on hippocampal neurogenesis, is sparse. Here we evaluated hippocampal neurogenesis early (postnatal day 12), and later in life (postnatal day 60), in the offspring of mouse dams that were administered fluoxetine in their drinking water from embryonic day 15 (E15) through postnatal day 12 (P12). Fluoxetine-exposed mice had significantly higher levels of neuronal proliferation at P12, and P60, despite cessation of fluoxetine on P12.These effects were limited to proliferation, as survival of postnatal-born hippocampal neurons was unaltered. Mice exposed to fluoxetine also showed significantly higher levels of cell death, suggesting that homeostatic mechanisms present within the hippocampus may limit integration of adult-born neurons into the existing neuronal network. These findings demonstrate modulation of serotonin during development may be sufficient to induce long-lasting changes in hippocampal neurogenesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.