The proteasome plays a central role in the degradation of regulatory and misfolded proteins. Current models suggest that substrates access the internal catalytic sites by processively threading their termini through the gated substrate channel. Here, we found that latent (closed) and activated (open) proteasomes degraded two natively disordered substrates at internal peptide bonds even when they lacked accessible termini, suggesting that these substrates themselves promoted gating of the proteasome. This endoproteolysis provides a molecular mechanism for regulated release of transcription factors from inactive precursors as well as a means of accessing internal folding defects of misfolded multidomain proteins.
The linear sequence of amino acids contains all the necessary information for a protein to fold into its unique three-dimensional structure. Native protein sequences are known to accomplish this by promoting the formation of stable, kinetically accessible structures. Here we describe a Pro residue in the center of the third transmembrane helix of the cystic fibrosis transmembrane conductance regulator that promotes folding by a distinct mechanism: disfavoring the formation of a misfolded structure. The generality of this mechanism is supported by genome-wide transmembrane sequence analyses. Furthermore, the results provide an explanation for the increased frequency of Pro residues in transmembrane alpha-helices. Incorporation by nature of such 'negative folding determinants', aimed at preventing the formation of off-pathway structures, represents an additional mechanism by which folding information is encoded within the evolved sequences of proteins.
Bulk protein degradation in the cell is catalyzed by the ubiquitin-proteasome system (UPS). At the heart of the UPS is the proteasome, a large multisubunit tightly-regulated protease. The UPS performs key functions in protein quality control by monitoring and eliminating potentially toxic misfolded or damaged proteins. When the capacity of this protease system is exceeded, misfolded protein substrates aggregate and are assembled through an active and regulated process to form an aggresome. Aggresomes are dynamic structures, formed as a general response to an overload of improperly folded proteins. Assembly of aggresomes occurs at the centrosome, a perinuclear structure that also serves as a site for the recruitment and concentration of components of the UPS, including the proteasome, its regulators, and other proteins typically involved in protein quality control. Thus, in addition to other cellular activities, the centrosome may play a central role in protein quality control, sitting at the crossroads of protein folding, degradation, and aggregation.
Exotoxin A (ETA) inhibits protein synthesis in cells by a process that involves receptor-mediated endocytosis and the transport of a 37-kDa proteolytic fragment across a membrane into the cytoplasm. The fragment is apparently generated by the endoprotease furin after the toxin has been endocytosed. Cleavage of ETA by furin requires a low pH in vitro, and presumably also in vivo. Drugs that raise the pH of intracellular compartments are known to protect cells from ETA. The simplest hypothesis to explain this protection has been that the drugs interfere with furin cleavage. To test this idea, we measured the effect of pH-elevating drugs on the action of ETA that had been precleaved with recombinant furin before addition to cells. Surprisingly, we found that pH-elevating drugs protected cells from precleaved ETA as well as intact ETA. These results suggest that the process by which ETA intoxicates cells requires a low vacuolar pH for another event in addition to proteolysis by furin.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.