The cost of photovoltaic power can be reduced with organic solar concentrators. These are planar waveguides with a thin-film organic coating on the face and inorganic solar cells attached to the edges. Light is absorbed by the coating and reemitted into waveguide modes for collection by the solar cells. We report single- and tandem-waveguide organic solar concentrators with quantum efficiencies exceeding 50% and projected power conversion efficiencies as high as 6.8%. The exploitation of near-field energy transfer, solid-state solvation, and phosphorescence enables 10-fold increases in the power obtained from photovoltaic cells, without the need for solar tracking.
Solar concentrators can significantly reduce the use of expensive semiconductor materials in photovoltaic (PV) energy conversion. Luminescent solar concentrators (LSCs) are especially promising because they do not need to track the sun to obtain high optical concentration factors. [1][2][3][4][5][6] In this work, we demonstrate LSCs employing phycobilisomes, which are photosynthetic antenna complexes that concentrate excited states in red algae and cyanobacteria. [7,8] The phycobilisomes are cast in a solid-state matrix that preserves their internal Förster energy-transfer pathways and large wavelength shift between absorption and emission. Casting is a simple fabrication technique that also eliminates any need for expensive high-index glass or plastic. By comparing the performance of intact and partly decoupled complexes, we establish that energy transfer within intact phycobilisomes reduces LSC self-absorption losses by approximately (48 AE 5)%. These results suggest that phycobilisomes are a model for a new generation of cast LSCs with improved efficiency at high optical concentrations.LSCs are nontracking concentrators that redirect solar radiation into simple slab waveguides (see Fig. 1a). Light incident on an LSC is absorbed by dyes, re-emitted into a guided mode in the slab, and finally collected by a PV cell mounted at the edge of the slab. The maximum optical concentration of an LSC is theoretically limited by the wavelength shift between absorption and emission in the dye.[9] Larger wavelength shifts reduce the re-absorption of radiation already emitted into the LSC waveguide, [10,11] and alleviate compounding losses if either the photoluminescence efficiency of the dye, h PL , or the fraction of emitted light trapped in the waveguide, h trap , is less than unity.
In bacteria and archaea, tripartite ATP-independent periplasmic (TRAP) transporters uptake essential nutrients. TRAP transporters receive their substrates via a secreted soluble substrate-binding protein. How a sodium ion-driven secondary active transporter is strictly coupled to a substrate-binding protein is poorly understood. Here we report the cryo-EM structure of the sialic acid TRAP transporter SiaQM from Photobacterium profundum at 2.97 Å resolution. SiaM comprises a “transport” domain and a “scaffold” domain, with the transport domain consisting of helical hairpins as seen in the sodium ion-coupled elevator transporter VcINDY. The SiaQ protein forms intimate contacts with SiaM to extend the size of the scaffold domain, suggesting that TRAP transporters may operate as monomers, rather than the typically observed oligomers for elevator-type transporters. We identify the Na+ and sialic acid binding sites in SiaM and demonstrate a strict dependence on the substrate-binding protein SiaP for uptake. We report the SiaP crystal structure that, together with docking studies, suggest the molecular basis for how sialic acid is delivered to the SiaQM transporter complex. We thus propose a model for substrate transport by TRAP proteins, which we describe herein as an ‘elevator-with-an-operator’ mechanism.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.